Use multiplication to expand the expression below. Then compute.

[tex]\[ (-10)^4 \][/tex]

Expanded form: [tex]\[ (-10) \times (-10) \times (-10) \times (-10) \][/tex]

Compute: [tex]\[ (-10)^4 = 10,000 \][/tex]

Answer Attempt 1 out of 2

Press the [tex]$\times$[/tex] button or type the * symbol on your keyboard to represent multiplication.



Answer :

Let's break down the problem step by step to expand and compute the expression [tex]\((-10)^4\)[/tex].

1. Identify the base and exponent:
- The base of the expression is [tex]\(-10\)[/tex].
- The exponent is 4.

2. Understand what the expression means:
- The expression [tex]\((-10)^4\)[/tex] means that we need to multiply [tex]\(-10\)[/tex] by itself 4 times.

3. Expand the expression:
- [tex]\[ (-10)^4 = (-10) \times (-10) \times (-10) \times (-10) \][/tex]

4. First multiplication:
- [tex]\[ (-10) \times (-10) = 100 \][/tex]
- Multiplying two negative numbers results in a positive number.

5. Second multiplication:
- [tex]\[ 100 \times (-10) = -1000 \][/tex]
- Multiplying a positive number by a negative number results in a negative number.

6. Third multiplication:
- [tex]\[ -1000 \times (-10) = 10000 \][/tex]
- Again, multiplying two negative numbers results in a positive number.

Therefore, the final result is:
[tex]\[ (-10)^4 = 10000 \][/tex]

So, expanding and computing [tex]\((-10)^4\)[/tex] gives us [tex]\(10000\)[/tex].