A large diamond with a mass of 481.3 grams was recently discovered in a mine. If the density of the diamond is [tex]3.51 \frac{g}{cm^3}[/tex], what is the volume? Round your answer to the nearest hundredth.

A. [tex]48.23 \, cm^3[/tex]
B. [tex]55.91 \, cm^3[/tex]
C. [tex]58.71 \, cm^3[/tex]
D. [tex]137.12 \, cm^3[/tex]



Answer :

To determine the volume of the diamond, we need to use the formula for density, which is:

[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]

Given the density and mass of the diamond, we can rearrange the formula to solve for the volume:

[tex]\[ \text{Volume} = \frac{\text{Mass}}{\text{Density}} \][/tex]

Substitute the given values into the formula:

- Mass ([tex]\( m \)[/tex]) = 481.3 grams
- Density ([tex]\( \rho \)[/tex]) = 3.51 grams per cubic centimeter

Now, we can calculate the volume:

[tex]\[ \text{Volume} = \frac{481.3 \text{ grams}}{3.51 \text{ grams per cubic centimeter}} \][/tex]

[tex]\[ \text{Volume} = 137.12250712250713 \text{ cubic centimeters} \][/tex]

The problem requires us to round the answer to the nearest hundredth. So, rounding [tex]\( 137.12250712250713 \)[/tex] to the nearest hundredth gives:

[tex]\[ 137.12 \text{ cubic centimeters} \][/tex]

Therefore, the volume of the diamond is:

[tex]\[ \boxed{137.12 \text{ cm}^3} \][/tex]