Point [tex]$B$[/tex] is between [tex]$A$[/tex] and [tex]$C$[/tex] on [tex]$\overline{AC}$[/tex]. Use the information to write an equation in terms of [tex]$x$[/tex]. Then solve the equation and find [tex]$AB$[/tex], [tex]$BC$[/tex], and [tex]$AC$[/tex].

1.
[tex]\[
\begin{array}{l}
AB = 13 + 2x \\
BC = 12 \\
AC = x + 32
\end{array}
\][/tex]

2.
[tex]\[
\begin{array}{l}
AC = 95 \\
AB = 15x - 10 \\
BC = 5x + 5
\end{array}
\][/tex]

3.
[tex]\[
\begin{array}{l}
AB = 8x + 5 \\
BC = 5x - 9 \\
AC = 74
\end{array}
\][/tex]

4.
[tex]\[
\begin{array}{l}
AC = 8x - 16 \\
AB = 3x - 8 \\
BC = 4x
\end{array}
\][/tex]



Answer :

Alright class, let’s address Problem 21 where we need to find the lengths of [tex]\( AB \)[/tex], [tex]\( BC \)[/tex], and [tex]\( AC \)[/tex] given certain equations in terms of [tex]\( x \)[/tex].

First, we are given the following equations:
[tex]\[ AC = 8x - 16 \][/tex]
[tex]\[ AB = 3x - 8 \][/tex]
[tex]\[ BC = 4x \][/tex]

Since point [tex]\( B \)[/tex] is between points [tex]\( A \)[/tex] and [tex]\( C \)[/tex] on the line segment [tex]\(\overline{AC}\)[/tex], we know that:
[tex]\[ AB + BC = AC \][/tex]

Plugging in the given expressions:
[tex]\[ (3x - 8) + 4x = 8x - 16 \][/tex]

Combine like terms on the left side:
[tex]\[ 3x - 8 + 4x = 8x - 16 \][/tex]
[tex]\[ 7x - 8 = 8x - 16 \][/tex]

Now, subtract [tex]\( 7x \)[/tex] from both sides to isolate the term with [tex]\( x \)[/tex] on one side:
[tex]\[ -8 = x - 16 \][/tex]

Add 16 to both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ 8 = x \][/tex]

So, we have found the value of [tex]\( x \)[/tex]:
[tex]\[ x = 8 \][/tex]

Now let's find the lengths of [tex]\( AB \)[/tex], [tex]\( BC \)[/tex], and [tex]\( AC \)[/tex] by substituting [tex]\( x = 8 \)[/tex] back into the original expressions.

Substitute [tex]\( x = 8 \)[/tex] into [tex]\( AB \)[/tex]:
[tex]\[ AB = 3x - 8 \][/tex]
[tex]\[ AB = 3(8) - 8 \][/tex]
[tex]\[ AB = 24 - 8 \][/tex]
[tex]\[ AB = 16 \][/tex]

Substitute [tex]\( x = 8 \)[/tex] into [tex]\( BC \)[/tex]:
[tex]\[ BC = 4x \][/tex]
[tex]\[ BC = 4(8) \][/tex]
[tex]\[ BC = 32 \][/tex]

Substitute [tex]\( x = 8 \)[/tex] into [tex]\( AC \)[/tex]:
[tex]\[ AC = 8x - 16 \][/tex]
[tex]\[ AC = 8(8) - 16 \][/tex]
[tex]\[ AC = 64 - 16 \][/tex]
[tex]\[ AC = 48 \][/tex]

Therefore, the lengths are:
[tex]\[ AB = 16 \][/tex]
[tex]\[ BC = 32 \][/tex]
[tex]\[ AC = 48 \][/tex]