Answer :

To find the sum of the first 29 natural numbers ([tex]\(1 + 2 + 3 + \ldots + 29\)[/tex]), we use the formula for the sum of the first [tex]\( n \)[/tex] natural numbers. The sum [tex]\( S \)[/tex] of the first [tex]\( n \)[/tex] natural numbers is given by:

[tex]\[ S = \frac{n(n + 1)}{2} \][/tex]

Here, [tex]\( n \)[/tex] is 29.

1. Substitute [tex]\( n = 29 \)[/tex] into the formula:

[tex]\[ S = \frac{29(29 + 1)}{2} \][/tex]
[tex]\[ S = \frac{29 \times 30}{2} \][/tex]

2. Calculate the product inside the numerator:

[tex]\[ 29 \times 30 = 870 \][/tex]

3. Divide by 2:

[tex]\[ S = \frac{870}{2} = 435 \][/tex]

Thus, the sum of the numbers from 1 to 29 is 435.

The correct answer is:

D. 435