Select the best answer for the question.

An SUV is traveling at a speed of [tex]$18 \, \text{m/s}$[/tex]. If the SUV has a mass of [tex]$1,550 \, \text{kg}$[/tex], what force must be applied to stop it in 8 seconds?

A. [tex]-4,030.7 \, \text{N}[/tex]
B. [tex]-2.25 \, \text{N}[/tex]
C. [tex]-2,700.0 \, \text{N}[/tex]
D. [tex]-3,487.5 \, \text{N}[/tex]



Answer :

To determine the force required to stop the SUV, we will use the following physics principles:

1. Calculation of Acceleration:
- We know the initial speed ([tex]\( v_i \)[/tex]) of the SUV is [tex]\( 18 \, \text{m/s} \)[/tex].
- The final speed ([tex]\( v_f \)[/tex]) is [tex]\( 0 \, \text{m/s} \)[/tex] since the vehicle comes to a stop.
- The time ([tex]\( t \)[/tex]) over which the SUV is brought to a stop is [tex]\( 8 \)[/tex] seconds.

Using the formula for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the known values:
[tex]\[ a = \frac{0 \, \text{m/s} - 18 \, \text{m/s}}{8 \, \text{seconds}} \][/tex]
Simplifying this:
[tex]\[ a = \frac{-18 \, \text{m/s}}{8 \, \text{seconds}} = -2.25 \, \text{m/s}^2 \][/tex]

2. Application of Newton's Second Law:
- The mass ([tex]\( m \)[/tex]) of the SUV is [tex]\( 1550 \)[/tex] kg.
- Newton's second law states that the force ([tex]\( F \)[/tex]) is the product of mass and acceleration:
[tex]\[ F = m \times a \][/tex]
Substituting the known values:
[tex]\[ F = 1550 \, \text{kg} \times (-2.25 \, \text{m/s}^2) \][/tex]
Simplifying this:
[tex]\[ F = -3487.5 \, \text{N} \][/tex]

Therefore, the required force to stop the SUV is [tex]\( -3487.5 \, \text{N} \)[/tex].

The best answer to the question is:
D. [tex]\(-3487.5 \, \text{N}\)[/tex]