Select the best answer for the question.

An SUV is traveling at a speed of [tex]$18 \, m/s$[/tex]. If the SUV has a mass of [tex]$1,550 \, kg$[/tex], what force must be applied to stop it in 8 seconds?

A. [tex][tex]$-4,030.7 \, N$[/tex][/tex]

B. [tex]-2.25 \, N$[/tex]

C. [tex]$-2,700.0 \, N$[/tex]

D. [tex]$-3,487.5 \, N$[/tex]



Answer :

To determine the force required to stop the SUV, we need to follow these steps:

1. Identify the given values:
- Initial speed ([tex]\(v_i\)[/tex]) of the SUV: [tex]\(18 \, \text{m/s}\)[/tex]
- Mass ([tex]\(m\)[/tex]) of the SUV: [tex]\(1,550 \, \text{kg}\)[/tex]
- Time ([tex]\(t\)[/tex]) in which the SUV should stop: [tex]\(8 \, \text{seconds}\)[/tex]

2. Determine the final speed ([tex]\(v_f\)[/tex]):
Since the SUV is coming to a stop, the final speed is [tex]\(0 \, \text{m/s}\)[/tex].

3. Calculate the acceleration ([tex]\(a\)[/tex]):
Using the formula for acceleration:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the known values:
[tex]\[ a = \frac{0 \, \text{m/s} - 18 \, \text{m/s}}{8 \, \text{seconds}} = \frac{-18 \, \text{m/s}}{8 \, \text{seconds}} = -2.25 \, \text{m/s}^2 \][/tex]

4. Calculate the force ([tex]\(F\)[/tex]):
Using Newton's second law of motion ([tex]\(F = ma\)[/tex]):
[tex]\[ F = 1,550 \, \text{kg} \times -2.25 \, \text{m/s}^2 = -3,487.5 \, \text{N} \][/tex]

Thus, the force that must be applied to stop the SUV in 8 seconds is [tex]\( -3,487.5 \, \text{N} \)[/tex]. The correct answer is:

D. [tex]\(-3,487.5 \, \text{N}\)[/tex]