Answered

3. Multiply the following binomials:

(a) [tex]\((x-y) \cdot (x-y)\)[/tex]

(b) [tex]\(\left(a^2 b^2 + b^2 c^2\right) \cdot (ab - bc)\)[/tex]



Answer :

Sure, let's multiply the given binomials step by step:

### Part (a):
Multiply [tex]\((x - y)\)[/tex] by [tex]\((x - y)\)[/tex].

1. Use the distributive property (also known as the FOIL method for binomials):

[tex]\[ (x - y)(x - y) = x(x - y) - y(x - y) \][/tex]

2. Distribute each term:

[tex]\[ = x^2 - xy - yx + y^2 \][/tex]

3. Combine like terms:

[tex]\[ = x^2 - 2xy + y^2 \][/tex]

So, the result of multiplying [tex]\((x - y)\)[/tex] by [tex]\((x - y)\)[/tex] is:

[tex]\[ x^2 - 2xy + y^2 \][/tex]

### Part (c):
Multiply [tex]\(\left(a^2 b^2 + b^2 c^2\right)\)[/tex] by [tex]\((a b - b c)\)[/tex].

1. Distribute each term in the first binomial by each term in the second binomial:

[tex]\[ (a^2 b^2 + b^2 c^2)(a b - b c) = (a^2 b^2)(a b) - (a^2 b^2)(b c) + (b^2 c^2)(a b) - (b^2 c^2)(b c) \][/tex]

2. Multiply the terms accordingly:

[tex]\[ = a^3 b^3 - a^2 b^3 c + a b^3 c^2 - b^3 c^3 \][/tex]

So, the result of multiplying [tex]\(\left(a^2 b^2 + b^2 c^2\right)\)[/tex] by [tex]\((a b - b c)\)[/tex] is:

[tex]\[ a^3 b^3 - a^2 b^3 c + a b^3 c^2 - b^3 c^3 \][/tex]

Thus, the final answers are:
(a) [tex]\( x^2 - 2xy + y^2 \)[/tex]
(c) [tex]\( a^3 b^3 - a^2 b^3 c + a b^3 c^2 - b^3 c^3 \)[/tex]