The table shows ordered pairs of the function [tex]y = 8 - 2x[/tex]. What is the value of [tex]y[/tex] when [tex]x = 8[/tex]?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & 14 \\
\hline
-1 & 10 \\
\hline
1 & 6 \\
\hline
4 & 0 \\
\hline
8 & [tex]$?$[/tex] \\
\hline
10 & -12 \\
\hline
\end{tabular}

[tex]-20[/tex]



Answer :

To determine the value of [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex] for the function [tex]\( y = 8 - 2x \)[/tex], we follow these steps:

1. Identify the given function: [tex]\( y = 8 - 2x \)[/tex].

2. Substitute [tex]\( x = 8 \)[/tex] into the function:
[tex]\[ y = 8 - 2(8) \][/tex]

3. Perform the multiplication inside the parentheses:
[tex]\[ y = 8 - 16 \][/tex]

4. Finally, perform the subtraction:
[tex]\[ y = -8 \][/tex]

Thus, the value of [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex] is [tex]\( -8 \)[/tex].