Which correctly uses bar notation to represent the repeating decimal for [tex]\overline{11}^{\text{?}}[/tex]?

A. [tex]0.5 \overline{4}[/tex]
B. [tex]0.54 \overline{54}[/tex]
C. [tex]0 . \overline{54}[/tex]
D. [tex]0 . \overline{545}[/tex]



Answer :

To solve the problem of identifying which option correctly uses bar notation to represent the repeating decimal for [tex]\(\overline{11}\)[/tex], let's recall what bar notation for repeating decimals means. Bar notation puts a line (or "bar") over the digits that repeat indefinitely in the decimal representation.

First, consider the given choices:

1. [tex]\(0.5\overline{4}\)[/tex]
2. [tex]\(0.54\overline{54}\)[/tex]
3. [tex]\(0.\overline{54}\)[/tex]
4. [tex]\(0.\overline{545}\)[/tex]

To determine the correct option:

1. [tex]\(0.5\overline{4}\)[/tex]: This notation means 0.544444..., where only the digit 4 repeats.
2. [tex]\(0.54\overline{54}\)[/tex]: This notation means 0.5454545454..., where the sequence 54 repeats.
3. [tex]\(0.\overline{54}\)[/tex]: This notation means 0.54545454..., where the sequence 54 repeats.
4. [tex]\(0.\overline{545}\)[/tex]: This notation means 0.545454545..., where the sequence 545 repeats.

The correct notation to represent the repeating decimal "54" is [tex]\(0.\overline{54}\)[/tex]. This option (3) indicates that "54" repeats indefinitely after the decimal point.

Therefore, the answer to the question is:

[tex]\[ \boxed{3} \][/tex]