Answered

Subtract the two polynomials:

[tex]\[ \left(3x^5 - 2x^4 - 5\right) - \left(2x^4 + x^2 - 10\right) \][/tex]

A. [tex]\( 3x^5 - 10x^2 - 5x + 10 \)[/tex]
B. [tex]\( 3x^5 - 4x^4 - x^2 + 5 \)[/tex]
C. [tex]\( 3x^5 - 4x^4 + x^2 - 15 \)[/tex]
D. [tex]\( 3x^4 + x^2 + 15 \)[/tex]



Answer :

To subtract the two polynomials [tex]\(\left(3 x^5-2 x^4-5\right)-\left(2 x^4+x^2-10\right)\)[/tex], follow these steps:

1. Write down the two polynomials:
[tex]\[ \text{Poly1} = 3x^5 - 2x^4 - 5 \][/tex]
[tex]\[ \text{Poly2} = 2x^4 + x^2 - 10 \][/tex]

2. Set up the subtraction of the second polynomial from the first:
[tex]\[ 3x^5 - 2x^4 - 5 - \left(2x^4 + x^2 - 10\right) \][/tex]

3. Distribute the negative sign to each term inside the parentheses:
[tex]\[ 3x^5 - 2x^4 - 5 - 2x^4 - x^2 + 10 \][/tex]

4. Combine like terms:

- The [tex]\(x^5\)[/tex] term: [tex]\(3x^5\)[/tex]
- The [tex]\(x^4\)[/tex] terms: [tex]\(-2x^4\)[/tex] and [tex]\(-2x^4\)[/tex] combine to [tex]\(-4x^4\)[/tex]
- The [tex]\(x^2\)[/tex] term: [tex]\(-x^2\)[/tex]
- The constant terms: [tex]\(-5\)[/tex] and [tex]\(+10\)[/tex] combine to [tex]\(+5\)[/tex]

5. Write the simplified polynomial:
[tex]\[ 3x^5 - 4x^4 - x^2 + 5 \][/tex]

Thus, the correct choice is:

(B) [tex]\(3 x^5 - 4 x^4 - x^2 + 5\)[/tex]