Using Volume Formulas: Mastery Test

Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

A right pyramid has a height of 3 inches and a square base with a side length of 5 inches. What is the volume of the pyramid?

The volume of this pyramid is _____ cubic inches.



Answer :

To find the volume of the right pyramid, we need to follow these steps:

1. Calculate the area of the base:
- The base of the pyramid is a square.
- The side length of the square base is 5 inches.
- The area of a square is given by the formula: [tex]\[ \text{Area} = \text{side length}^2 \][/tex]
- Substituting the side length: [tex]\[ \text{Area} = 5^2 = 25 \, \text{square inches} \][/tex]

2. Use the volume formula for a pyramid:
- The formula to find the volume of a pyramid is: [tex]\[ \text{Volume} = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
- Here, the height of the pyramid is 3 inches, and the base area calculated is 25 square inches.
- Substituting the values: [tex]\[ \text{Volume} = \frac{1}{3} \times 25 \, \text{square inches} \times 3 \, \text{inches} \][/tex]
- Simplifying this: [tex]\[ \text{Volume} = \frac{1}{3} \times 75 \, \text{cubic inches} \][/tex]
- [tex]\[ \text{Volume} = 25 \, \text{cubic inches} \][/tex]

Therefore, the volume of the right pyramid is [tex]\( 25 \)[/tex] cubic inches.