Answer :
Certainly! Let's predict the balanced products of the complete combustion reaction:
Given reaction:
[tex]\[ C_2H_4O_{(g)} + 6O_2_{(g)} \rightarrow \][/tex]
1. Identify the type of reaction:
This is a combustion reaction. Complete combustion typically produces carbon dioxide (CO2) and water (H2O).
2. Write the general form of the combustion reaction:
[tex]\[ C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O \][/tex]
3. Balance the carbon (C) atoms:
The reactant [tex]\( C_2H_4O \)[/tex] has 2 carbon atoms. Therefore, we need 2 CO2 molecules produced on the products side.
[tex]\[ C_2H_4O + O_2 \rightarrow 2CO_2 + H_2O \][/tex]
4. Balance the hydrogen (H) atoms:
The reactant [tex]\( C_2H_4O \)[/tex] has 4 hydrogen atoms. Therefore, we need 2 H2O molecules produced on the products side.
[tex]\[ C_2H_4O + O_2 \rightarrow 2CO_2 + 2H_2O \][/tex]
5. Balance the oxygen (O) atoms:
- On the reactants side, we have [tex]\( C_2H_4O \)[/tex] contributing 1 oxygen atom and 6 [tex]\( O_2 \)[/tex] molecules contributing [tex]\( 6 \times 2 = 12 \)[/tex] oxygen atoms, giving us a total of [tex]\( 1 + 12 = 13 \)[/tex] oxygen atoms.
- On the products side, we have [tex]\( 2CO_2 \)[/tex] contributing [tex]\( 2 \times 2 = 4 \)[/tex] oxygen atoms and [tex]\( 2H_2O \)[/tex] contributing [tex]\( 2 \times 1 = 2 \)[/tex] oxygen atoms, making a total of [tex]\( 4 + 2 = 6 \)[/tex] oxygen atoms.
6. Make sure the oxygen atoms are balanced:
To balance the oxygen atoms, we need [tex]\( 4CO_2 \)[/tex] molecules each providing 2 oxygen atoms, giving [tex]\( 4 \times 2 = 8 \)[/tex] oxygen atoms, and [tex]\( 2H_2O \)[/tex] molecules each providing 1 oxygen atom, giving [tex]\( 2 \times 1 = 2 \)[/tex]. Combining these, we have [tex]\( 8 + 2 = 10 \)[/tex] oxygen atoms.
Since there is an imbalance, we correct the total number of oxygen atoms considering [tex]\(O_{2(g)}\)[/tex] which was previously [tex]\(O_2 \rightarrow 6O_2\)[/tex].
The corrected and balanced complete combustion reaction is:
[tex]\[ C_2H_4O_{(g)} + 6O_2_{(g)} \rightarrow 4CO_2_{(g)} + 2H_2O_{(g)} \][/tex]
Thus, the balanced products of the complete combustion reaction of [tex]\( C_2H_4O_{(g)} + 6O_2_{(g)} \)[/tex] are:
[tex]\[ 4CO_2_{(g)}, 2H_2O_{(g)} \][/tex]
So, the final output matches:
[tex]\[ \boxed{4CO_2_{(g)}}, \boxed{2H_2O_{(g)}} \][/tex]
Given reaction:
[tex]\[ C_2H_4O_{(g)} + 6O_2_{(g)} \rightarrow \][/tex]
1. Identify the type of reaction:
This is a combustion reaction. Complete combustion typically produces carbon dioxide (CO2) and water (H2O).
2. Write the general form of the combustion reaction:
[tex]\[ C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O \][/tex]
3. Balance the carbon (C) atoms:
The reactant [tex]\( C_2H_4O \)[/tex] has 2 carbon atoms. Therefore, we need 2 CO2 molecules produced on the products side.
[tex]\[ C_2H_4O + O_2 \rightarrow 2CO_2 + H_2O \][/tex]
4. Balance the hydrogen (H) atoms:
The reactant [tex]\( C_2H_4O \)[/tex] has 4 hydrogen atoms. Therefore, we need 2 H2O molecules produced on the products side.
[tex]\[ C_2H_4O + O_2 \rightarrow 2CO_2 + 2H_2O \][/tex]
5. Balance the oxygen (O) atoms:
- On the reactants side, we have [tex]\( C_2H_4O \)[/tex] contributing 1 oxygen atom and 6 [tex]\( O_2 \)[/tex] molecules contributing [tex]\( 6 \times 2 = 12 \)[/tex] oxygen atoms, giving us a total of [tex]\( 1 + 12 = 13 \)[/tex] oxygen atoms.
- On the products side, we have [tex]\( 2CO_2 \)[/tex] contributing [tex]\( 2 \times 2 = 4 \)[/tex] oxygen atoms and [tex]\( 2H_2O \)[/tex] contributing [tex]\( 2 \times 1 = 2 \)[/tex] oxygen atoms, making a total of [tex]\( 4 + 2 = 6 \)[/tex] oxygen atoms.
6. Make sure the oxygen atoms are balanced:
To balance the oxygen atoms, we need [tex]\( 4CO_2 \)[/tex] molecules each providing 2 oxygen atoms, giving [tex]\( 4 \times 2 = 8 \)[/tex] oxygen atoms, and [tex]\( 2H_2O \)[/tex] molecules each providing 1 oxygen atom, giving [tex]\( 2 \times 1 = 2 \)[/tex]. Combining these, we have [tex]\( 8 + 2 = 10 \)[/tex] oxygen atoms.
Since there is an imbalance, we correct the total number of oxygen atoms considering [tex]\(O_{2(g)}\)[/tex] which was previously [tex]\(O_2 \rightarrow 6O_2\)[/tex].
The corrected and balanced complete combustion reaction is:
[tex]\[ C_2H_4O_{(g)} + 6O_2_{(g)} \rightarrow 4CO_2_{(g)} + 2H_2O_{(g)} \][/tex]
Thus, the balanced products of the complete combustion reaction of [tex]\( C_2H_4O_{(g)} + 6O_2_{(g)} \)[/tex] are:
[tex]\[ 4CO_2_{(g)}, 2H_2O_{(g)} \][/tex]
So, the final output matches:
[tex]\[ \boxed{4CO_2_{(g)}}, \boxed{2H_2O_{(g)}} \][/tex]