Electronic transition in [tex]$He ^{+}$[/tex] ion takes place from [tex]$n_2$[/tex] to [tex][tex]$n_1$[/tex][/tex] shell such that:

[tex]\[
\begin{array}{l}
2 n_2 + 3 n_1 = 18 \\
2 n_2 - 3 n_1 = 6
\end{array}
\][/tex]

What will be the total number of photons emitted when electrons transit to [tex]$n_1$[/tex] shell?

A. 21
B. 15
C. 20
D. 10



Answer :

To find the total number of photons emitted during the transition of electrons from the [tex]\(n_2\)[/tex] shell to the [tex]\(n_1\)[/tex] shell in a [tex]\( He^+ \)[/tex] ion, we need to solve the given system of equations and then use the information to calculate the number of photons.

The given system of equations is:

[tex]\[ \begin{cases} 2n_2 + 3n_1 = 18 \\ 2n_2 - 3n_1 = 6 \end{cases} \][/tex]

Step 1: Solve the system of equations for [tex]\(n_2\)[/tex] and [tex]\(n_1\)[/tex]

We start by adding the two equations to eliminate [tex]\( n_1 \)[/tex]:

[tex]\[ (2n_2 + 3n_1) + (2n_2 - 3n_1) = 18 + 6 \][/tex]

This simplifies to:

[tex]\[ 4n_2 = 24 \][/tex]

Divide both sides by 4:

[tex]\[ n_2 = 6 \][/tex]

Next, substitute [tex]\( n_2 = 6 \)[/tex] back into one of the original equations to solve for [tex]\( n_1 \)[/tex]:

Using [tex]\( 2n_2 - 3n_1 = 6 \)[/tex]:

[tex]\[ 2(6) - 3n_1 = 6 \][/tex]

This simplifies to:

[tex]\[ 12 - 3n_1 = 6 \][/tex]

Subtract 12 from both sides:

[tex]\[ -3n_1 = -6 \][/tex]

Divide both sides by -3:

[tex]\[ n_1 = 2 \][/tex]

So, we have [tex]\( n_2 = 6 \)[/tex] and [tex]\( n_1 = 2 \)[/tex].

Step 2: Calculate the total number of photons emitted

Transitions to the [tex]\( n_1 \)[/tex] level from higher levels will involve the following steps and numbers of photons:
- From [tex]\( n_2 = 6 \)[/tex] to [tex]\( n_1 = 2 \)[/tex]
- Emitting photons for every transition from [tex]\( n_2 \)[/tex] down to [tex]\( n_1 \)[/tex]

The formula to calculate the total number of transitions (photons) is:
[tex]\[ \text{Total photons} = \frac{n_{2}(n_{2} + 1)}{2} - \frac{n_{1}(n_{1} - 1)}{2} \][/tex]

Substitute the values [tex]\( n_2 = 6 \)[/tex] and [tex]\( n_1 = 2 \)[/tex] into this formula:

[tex]\[ \text{Total photons} = \frac{6(6 + 1)}{2} - \frac{2(2 - 1)}{2} \][/tex]

This simplifies to:

[tex]\[ \text{Total photons} = \frac{6 \times 7}{2} - \frac{2 \times 1}{2} \][/tex]

[tex]\[ \text{Total photons} = \frac{42}{2} - \frac{2}{2} \][/tex]

[tex]\[ \text{Total photons} = 21 - 1 \][/tex]

[tex]\[ \text{Total photons} = 20 \][/tex]

Therefore, the total number of photons emitted when electrons transition to the [tex]\( n_1 = 2 \)[/tex] shell is 20.

The correct answer is:

(C) 20