Name the property used to go from step to step each time the (why?) occurs.

[tex]\[
\begin{aligned}
6 + 5(x + 7) & \\
= 6 + (5x + 35) & \quad (\text{Distributive Property}) \\
= 6 + (35 + 5x) & \quad (\text{Commutative Property of Addition}) \\
= (6 + 35) + 5x & \quad (\text{Associative Property of Addition}) \\
= 41 + 5x & \quad (\text{Addition}) \\
= 5x + 41 & \quad (\text{Commutative Property of Addition})
\end{aligned}
\][/tex]

Choose the correct property for each step below:

[tex]\[
\begin{aligned}
6 + 5(x + 7) & \\
= 6 + (5x + 35) & \quad \square \\
= 6 + (35 + 5x) & \quad \square \\
= (6 + 35) + 5x & \quad \square \\
= 41 + 5x & \quad \square \\
= 5x + 41 & \quad \square
\end{aligned}
\][/tex]



Answer :

Certainly! The solution can be broken down step-by-step and identified with the appropriate mathematical property used at each stage:

1. Starting with the expression:
[tex]\[ 6 + 5(x + 7) \][/tex]

2. From [tex]\(6 + 5(x + 7)\)[/tex] to [tex]\(6 + (5x + 35)\)[/tex]:
This step involves the Distributive Property, which states that [tex]\(a(b + c) = ab + ac\)[/tex]. Here, [tex]\(5\)[/tex] distributes over [tex]\(x + 7\)[/tex]:
[tex]\[ 6 + 5(x + 7) \rightarrow 6 + (5x + 35) \][/tex]

3. From [tex]\(6 + (5x + 35)\)[/tex] to [tex]\(6 + (35 + 5x)\)[/tex]:
This step uses the Commutative Property of Addition, which states that [tex]\(a + b = b + a\)[/tex]. Here, [tex]\(5x + 35\)[/tex] is rearranged as [tex]\(35 + 5x\)[/tex]:
[tex]\[ 6 + (5x + 35) \rightarrow 6 + (35 + 5x) \][/tex]

4. From [tex]\(6 + (35 + 5x)\)[/tex] to [tex]\((6 + 35) + 5x\)[/tex]:
This step applies the Associative Property of Addition, which states that [tex]\((a + b) + c = a + (b + c)\)[/tex]. Here, the grouping of terms changes:
[tex]\[ 6 + (35 + 5x) \rightarrow (6 + 35) + 5x \][/tex]

5. From [tex]\((6 + 35) + 5x\)[/tex] to [tex]\(41 + 5x\)[/tex]:
This step involves Simplification, where the arithmetic within the parentheses is solved:
[tex]\[ (6 + 35) + 5x \rightarrow 41 + 5x \][/tex]

6. From [tex]\(41 + 5x\)[/tex] to [tex]\(5x + 41\)[/tex]:
This step again involves the Commutative Property of Addition, which allows the order of addition to be switched:
[tex]\[ 41 + 5x \rightarrow 5x + 41 \][/tex]

Putting it all together, the properties used are:

[tex]\[ \begin{aligned} 6+5 & (x+7) \\ & =6+(5 x+35) \quad \text{Distributive Property} \\ & =6+(35+5 x) \quad \text{Commutative Property of Addition} \\ & =(6+35)+5 x \quad \text{Associative Property of Addition} \\ & =41+5 x \quad \text{Simplification} \\ & =5 x+41 \quad \text{Commutative Property of Addition} \end{aligned} \][/tex]

Therefore, the correct properties for each step are:

[tex]\[ \begin{aligned} 6 + 5 & (x + 7) \\ & = 6 + (5x + 35) \quad \text{Distributive Property} \\ & = 6 + (35 + 5x) \quad \text{Commutative Property of Addition} \\ & = (6 + 35) + 5x \quad \text{Associative Property of Addition} \\ & = 41 + 5x \quad \text{Simplification} \\ & = 5x + 41 \quad \text{Commutative Property of Addition} \end{aligned} \][/tex]

Now placing the respective properties next to the given steps:

1. Distributive Property
2. Commutative Property of Addition
3. Associative Property of Addition
4. Simplification
5. Commutative Property of Addition