To determine the average cost per game, given the expression [tex]\(\frac{3n + 7}{n}\)[/tex] where [tex]\(n\)[/tex] is the number of games, we need to substitute [tex]\(n = 4\)[/tex] into the expression and simplify it.
First, let's substitute [tex]\(n = 4\)[/tex]:
[tex]\[
\frac{3(4) + 7}{4}
\][/tex]
Next, we need to calculate the numerator:
[tex]\[
3 \times 4 = 12
\][/tex]
Now add 7 to the result:
[tex]\[
12 + 7 = 19
\][/tex]
We now have the fraction:
[tex]\[
\frac{19}{4}
\][/tex]
To simplify [tex]\(\frac{19}{4}\)[/tex], we perform the division:
[tex]\[
\frac{19}{4} = 4.75
\][/tex]
Hence, the average cost per game when James bowls 4 games is:
[tex]\[
\$4.75
\][/tex]
So, the correct answer is B. [tex]$\$[/tex]4.75$.