Select the correct answer.

This expression represents the average cost per game, in dollars, at a bowling alley, where [tex]n[/tex] represents the number of games: [tex]\frac{3n + 7}{n}[/tex].

What is the average cost per game if James bowls 4 games?

A. [tex]\$3.50[/tex]
B. [tex]\$4.75[/tex]
C. [tex]\$15.00[/tex]
D. [tex]\$2.75[/tex]



Answer :

To determine the average cost per game, given the expression [tex]\(\frac{3n + 7}{n}\)[/tex] where [tex]\(n\)[/tex] is the number of games, we need to substitute [tex]\(n = 4\)[/tex] into the expression and simplify it.

First, let's substitute [tex]\(n = 4\)[/tex]:

[tex]\[ \frac{3(4) + 7}{4} \][/tex]

Next, we need to calculate the numerator:

[tex]\[ 3 \times 4 = 12 \][/tex]

Now add 7 to the result:

[tex]\[ 12 + 7 = 19 \][/tex]

We now have the fraction:

[tex]\[ \frac{19}{4} \][/tex]

To simplify [tex]\(\frac{19}{4}\)[/tex], we perform the division:

[tex]\[ \frac{19}{4} = 4.75 \][/tex]

Hence, the average cost per game when James bowls 4 games is:

[tex]\[ \$4.75 \][/tex]

So, the correct answer is B. [tex]$\$[/tex]4.75$.