Solve the following system of equations:

[tex]\[
\left\{\begin{array}{l}
2x + 8y = -3 \\
3x + 6y = -4
\end{array}\right.
\][/tex]

Choose 2 answers:

A. Multiply the top equation by 3, multiply the bottom equation by 4, then subtract the bottom equation from the top equation.

B. Multiply the top equation by -4, multiply the bottom equation by 3, then add the equations.

C. Multiply the top equation by 3, multiply the bottom equation by -2, then add the equations.



Answer :

To solve the given system of equations using different approaches, let's break down each option in detail and find the results.

Given the system of equations:
[tex]\[ \begin{cases} 2x + 8y = -3 \\ 3x + 6y = -4 \end{cases} \][/tex]

Option A: Multiply the top equation by 3, multiply the bottom equation by 4, then subtract the bottom equation from the top equation.

1. Multiply the top equation by 3:
[tex]\[ 3(2x + 8y) = 3(-3) \][/tex]
[tex]\[ 6x + 24y = -9 \][/tex]

2. Multiply the bottom equation by 4:
[tex]\[ 4(3x + 6y) = 4(-4) \][/tex]
[tex]\[ 12x + 24y = -16 \][/tex]

3. Subtract the bottom equation from the top equation:
[tex]\[ (6x + 24y) - (12x + 24y) = -9 - (-16) \][/tex]
[tex]\[ 6x + 24y - 12x - 24y = -9 + 16 \][/tex]
[tex]\[ -6x = 7 \][/tex]
This indicates:
[tex]\[ x = -\frac{7}{6} \][/tex]

So, the first valid operation gives us [tex]\( x = -\frac{7}{6} \)[/tex].

Option B: Multiply the top equation by -4, multiply the bottom equation by 3, then add the equations.

1. Multiply the top equation by -4:
[tex]\[ -4(2x + 8y) = -4(-3) \][/tex]
[tex]\[ -8x - 32y = 12 \][/tex]

2. Multiply the bottom equation by 3:
[tex]\[ 3(3x + 6y) = 3(-4) \][/tex]
[tex]\[ 9x + 18y = -12 \][/tex]

3. Add the equations:
[tex]\[ (-8x - 32y) + (9x + 18y) = 12 + (-12) \][/tex]
[tex]\[ -8x + 9x - 32y + 18y = 0 \][/tex]
[tex]\[ x - 14y = 0 \][/tex]
This implies:
[tex]\[ x = 14y \][/tex]

So, the second valid operation reduces the system to [tex]\( x = 14y \)[/tex].

Option C: Multiply the top equation by 3, multiply the bottom equation by -2, then add the equations.

1. Multiply the top equation by 3:
[tex]\[ 3(2x + 8y) = 3(-3) \][/tex]
[tex]\[ 6x + 24y = -9 \][/tex]

2. Multiply the bottom equation by -2:
[tex]\[ -2(3x + 6y) = -2(-4) \][/tex]
[tex]\[ -6x - 12y = 8 \][/tex]

3. Add the equations:
[tex]\[ (6x + 24y) + (-6x - 12y) = -9 + 8 \][/tex]
[tex]\[ 6x - 6x + 24y - 12y = -1 \][/tex]
[tex]\[ 12y = -1 \][/tex]
This gives us:
[tex]\[ y = -\frac{1}{12} \][/tex]

So, the third valid operation provides [tex]\( y = -\frac{1}{12} \)[/tex].

To summarize:

- Option A: Results in [tex]\( x = -\frac{7}{6} \)[/tex]
- Option B: Results in [tex]\( x = 14y \)[/tex]
- Option C: Results in [tex]\( y = -\frac{1}{12} \)[/tex]

Both Options A and C are valid logical steps to solve the system of equations. Option B too, but it doesn't directly provide a solution, instead, it shows the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].