Determine whether each point lies on the graph of the equation.

[tex]\[ 4x - y - 5 = 0 \][/tex]

(a) [tex]\((1, 2)\)[/tex]

- Yes, the point is on the graph.
- No, the point is not on the graph.

(b) [tex]\((1, -1)\)[/tex]

- Yes, the point is on the graph.
- No, the point is not on the graph.



Answer :

To determine whether each point lies on the graph of the equation [tex]\( 4x - y - 5 = 0 \)[/tex], we will substitute the coordinates of each point into the equation and check if the equation holds true (i.e., whether it equals zero).

(a) Point (1, 2)

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation:

[tex]\[ 4(1) - 2 - 5 \][/tex]

First, calculate [tex]\( 4 \times 1 \)[/tex]:

[tex]\[ 4 \][/tex]

Next, subtract [tex]\( 2 \)[/tex]:

[tex]\[ 4 - 2 = 2 \][/tex]

Finally, subtract [tex]\( 5 \)[/tex]:

[tex]\[ 2 - 5 = -3 \][/tex]

The equation does not equal zero ([tex]\(-3 \neq 0\)[/tex]). Therefore, the point [tex]\((1, 2)\)[/tex] is not on the graph.

(b) Point (1, -1)

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = -1 \)[/tex] into the equation:

[tex]\[ 4(1) - (-1) - 5 \][/tex]

First, calculate [tex]\( 4 \times 1 \)[/tex]:

[tex]\[ 4 \][/tex]

Next, add [tex]\( 1 \)[/tex] (since subtracting a negative is equivalent to adding):

[tex]\[ 4 + 1 = 5 \][/tex]

Finally, subtract [tex]\( 5 \)[/tex]:

[tex]\[ 5 - 5 = 0 \][/tex]

The equation equals zero ([tex]\(0 = 0\)[/tex]). Therefore, the point [tex]\((1, -1)\)[/tex] is on the graph.

Summary:

(a) [tex]\((1, 2)\)[/tex] - No, the point is not on the graph.

(b) [tex]\((1, -1)\)[/tex] - Yes, the point is on the graph.