Rewrite the equations and solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

[tex]\[ -\frac{2}{3} y = -\frac{6}{3} + \frac{2}{3} x \][/tex]
[tex]\[ 10x = -2y - 2 \][/tex]

(Note: The original question had "12." and "15." which seem irrelevant to the question itself, so they are omitted for clarity.)



Answer :

To solve the system of equations given:

[tex]\[ -\frac{2}{3} y = -\frac{6}{3} + \frac{2}{3} x \][/tex]
[tex]\[ 10 x = -2 y - 2 \][/tex]

we can follow a systematic procedure step-by-step.

### Step 1: Simplify each equation

First, simplify the first equation.
[tex]\[ -\frac{2}{3} y = -2 + \frac{2}{3} x \][/tex]

Next, simplify the second equation.
[tex]\[ 10 x = -2 y - 2 \][/tex]

### Step 2: Solve for one variable in terms of the other

Let's solve the first equation for [tex]\(y\)[/tex].

Rearrange the first equation to isolate [tex]\(y\)[/tex]:
[tex]\[ -\frac{2}{3} y = -2 + \frac{2}{3} x \][/tex]
Multiply through by [tex]\(-3\)[/tex] to clear the fraction:
[tex]\[ 2y = 6 - 2x \][/tex]
[tex]\[ y = 3 - x \][/tex]

Now we have:
[tex]\[ y = 3 - x \][/tex]

### Step 3: Substitute into the other equation

Substitute [tex]\( y = 3 - x \)[/tex] into the second equation:
[tex]\[ 10 x = -2 y - 2 \][/tex]
[tex]\[ 10 x = -2 (3 - x) - 2 \][/tex]
Distribute the [tex]\(-2\)[/tex]:
[tex]\[ 10 x = -6 + 2x - 2 \][/tex]
Combine like terms:
[tex]\[ 10 x = 2 x - 8 \][/tex]
[tex]\[ 10 x - 2 x = -8 \][/tex]
[tex]\[ 8 x = -8 \][/tex]
[tex]\[ x = -1 \][/tex]

### Step 4: Solve for the other variable

Substitute [tex]\( x = -1 \)[/tex] back into [tex]\( y = 3 - x \)[/tex]:
[tex]\[ y = 3 - (-1) \][/tex]
[tex]\[ y = 3 + 1 \][/tex]
[tex]\[ y = 4 \][/tex]

Thus, the solution to the system of equations is:
[tex]\[ x = -1 \][/tex]
[tex]\[ y = 4 \][/tex]

Therefore, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations are [tex]\((-1, 4)\)[/tex].