(b) Given that [tex]$x^2 + \frac{1}{x^2} = 7$[/tex] and [tex]$x \ \textgreater \ 0$[/tex], find the value of:

[tex]\[
\begin{aligned}
y^2 & = \left( x^2 + \frac{1}{x} \right)^2 \\
y & = x^2 + 2 + \frac{1}{x} \\
y^2 & = 7 + 3 \\
& = 9 \\
y & = \sqrt{9} \\
& = 3
\end{aligned}
\][/tex]

Answer:



Answer :

Certainly! Let's go through the problem step by step to find the value of [tex]\( y \)[/tex].

### Given
[tex]\[ x^2 + \frac{1}{x^2} = 7 \][/tex]
and [tex]\( x > 0 \)[/tex].

### Step-by-Step Solution:

1. Calculate [tex]\( y^2 \)[/tex]:
We are given the expression for [tex]\( y^2 \)[/tex].
[tex]\[ y^2 = \left( x + \frac{1}{x} \right)^2 \][/tex]

2. Expand [tex]\( y^2 \)[/tex]:
By expanding the right-hand side, we get:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} \][/tex]
Simplifying this:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \][/tex]

3. Substitute the known value:
We know from the problem that:
[tex]\[ x^2 + \frac{1}{x^2} = 7 \][/tex]
Substituting this into our expanded formula for [tex]\( y^2 \)[/tex]:
[tex]\[ y^2 = 7 + 2 \][/tex]
So:
[tex]\[ y^2 = 9 \][/tex]

4. Calculate [tex]\( y \)[/tex]:
To find [tex]\( y \)[/tex], we take the square root of [tex]\( y^2 \)[/tex]:
[tex]\[ y = \sqrt{9} \][/tex]
Therefore:
[tex]\[ y = 3 \][/tex]

### Conclusion
The value of [tex]\( y \)[/tex] is [tex]\( 3 \)[/tex].

### Verification
The result we obtained agrees with the initial calculation we considered:
[tex]\[ y^2 = 9 \][/tex]
[tex]\[ y = 3 \][/tex]

Thus, we have the final answer:
[tex]\[ y = 3 \][/tex]