Find 5 solutions to the linear equation [tex]y = x + 2[/tex]. Then graph it.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-2 & \\
\hline
-1 & \\
\hline
0 & \\
\hline
1 & \\
\hline
2 & \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve the problem, we need to find the corresponding [tex]\( y \)[/tex] values for the given [tex]\( x \)[/tex] values in the linear equation [tex]\( y = x + 2 \)[/tex].

1. Substituting [tex]\( x = -2 \)[/tex] into the equation:
[tex]\[ y = -2 + 2 = 0 \][/tex]
So, when [tex]\( x = -2 \)[/tex], [tex]\( y = 0 \)[/tex].

2. Substituting [tex]\( x = -1 \)[/tex] into the equation:
[tex]\[ y = -1 + 2 = 1 \][/tex]
So, when [tex]\( x = -1 \)[/tex], [tex]\( y = 1 \)[/tex].

3. Substituting [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 0 + 2 = 2 \][/tex]
So, when [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex].

4. Substituting [tex]\( x = 1 \)[/tex] into the equation:
[tex]\[ y = 1 + 2 = 3 \][/tex]
So, when [tex]\( x = 1 \)[/tex], [tex]\( y = 3 \)[/tex].

5. Substituting [tex]\( x = 2 \)[/tex] into the equation:
[tex]\[ y = 2 + 2 = 4 \][/tex]
So, when [tex]\( x = 2 \)[/tex], [tex]\( y = 4 \)[/tex].

Now, we can complete the table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 0 \\ \hline -1 & 1 \\ \hline 0 & 2 \\ \hline 1 & 3 \\ \hline 2 & 4 \\ \hline \end{array} \][/tex]

To graph the linear equation [tex]\( y = x + 2 \)[/tex]:

1. Plot the points [tex]\((-2, 0)\)[/tex], [tex]\((-1, 1)\)[/tex], [tex]\( (0, 2)\)[/tex], [tex]\( (1, 3)\)[/tex], and [tex]\( (2, 4)\)[/tex] on the coordinate plane.
2. Draw a straight line through these points since the equation represents a linear function.

As a result, you will see that the points lie on a straight line with a slope of [tex]\(1\)[/tex] and a y-intercept of [tex]\(2\)[/tex].