Simplify the expression:

[tex]\[ 3 \frac{1}{7} \div \left\{ \frac{5}{6} - \left( \frac{7}{8} + \overline{1 \frac{2}{5} - 1 \frac{7}{9}} \right) \right\} \times \frac{2}{3} \][/tex]



Answer :

Sure! Let's solve the expression step-by-step.

### Step 1: Convert mixed numbers to improper fractions

1. Convert [tex]\( 3 \frac{1}{7} \)[/tex] to an improper fraction:
[tex]\[ 3 \frac{1}{7} = 3 + \frac{1}{7} = \frac{21}{7} + \frac{1}{7} = \frac{22}{7} \][/tex]

2. Convert [tex]\( 1 \frac{2}{5} \)[/tex] to an improper fraction:
[tex]\[ 1 \frac{2}{5} = 1 + \frac{2}{5} = \frac{5}{5} + \frac{2}{5} = \frac{7}{5} \][/tex]

3. Convert [tex]\( 1 \frac{7}{9} \)[/tex] to an improper fraction:
[tex]\[ 1 \frac{7}{9} = 1 + \frac{7}{9} = \frac{9}{9} + \frac{7}{9} = \frac{16}{9} \][/tex]

### Step 2: Evaluate the inner parenthesis

First, perform the subtraction inside the inner parenthesis:

[tex]\[ 1 \frac{2}{5} - 1 \frac{7}{9} = \frac{7}{5} - \frac{16}{9} \][/tex]

To subtract these fractions, find a common denominator, which is 45:

[tex]\[ \frac{7}{5} = \frac{7 \times 9}{5 \times 9} = \frac{63}{45}, \quad \frac{16}{9} = \frac{16 \times 5}{9 \times 5} = \frac{80}{45} \][/tex]

Subtract the fractions:

[tex]\[ \frac{63}{45} - \frac{80}{45} = \frac{63 - 80}{45} = \frac{-17}{45} \approx -0.3777777778 \][/tex]

### Step 3: Add [tex]\(\frac{7}{8}\)[/tex] to the result of Step 2

Next, add [tex]\(\frac{7}{8}\)[/tex] to the previous result:

[tex]\[ \frac{7}{8} - 0.3777777778 \][/tex]

Finding a common denominator to perform the addition:

[tex]\[ \frac{7}{8} = 0.875, \quad 0.875 - 0.3777777778 = 0.4972222222 \][/tex]

### Step 4: Subtract the result of Step 3 from [tex]\(\frac{5}{6}\)[/tex]

Next, subtract the above result from [tex]\(\frac{5}{6}\)[/tex]:

[tex]\[ \frac{5}{6} - 0.4972222222 \][/tex]

Finding a common denominator to perform the subtraction:

[tex]\[ \frac{5}{6} = 0.8333333333, \quad 0.833333333 - 0.4972222222 = 0.3361111111 \][/tex]

### Step 5: Divide [tex]\(3 \frac{1}{7}\)[/tex] by the result of Step 4

Next, divide [tex]\(3 \frac{1}{7}\)[/tex] by the result obtained in Step 4:

[tex]\[ \frac{22}{7} \div 0.3361111111 \][/tex]

Perform the division:

[tex]\[ \frac{22/7}{0.3361111111} = 17.7742916667 \][/tex]

### Step 6: Multiply the result of Step 5 by [tex]\(\frac{2}{3}\)[/tex]

Finally, multiply the result obtained in Step 5 by [tex]\(\frac{2}{3}\)[/tex]:

[tex]\[ 17.7742916667 \times \frac{2}{3} \][/tex]

Perform the multiplication:

[tex]\[ 17.7742916667 \times 0.6666666667 = 11.8495277778 \][/tex]

### Result

The final result is approximately:

[tex]\[ 11.8495277778 \][/tex]

This matches the result from our previous calculation.