If [tex]$x=6, y=8$[/tex], and [tex]$a=4$[/tex], what is the value of [tex]$(a + x + y)$[/tex]?

A. 29
B. 25
C. 21
D. 27



Answer :

To find the value of [tex]\( (a + b + y) \)[/tex], we need to know the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( y \)[/tex].

Given:
[tex]\[ x = 6 \][/tex]
[tex]\[ y = 8 \][/tex]
[tex]\[ a = 4 \][/tex]

Let's assume that [tex]\( b \)[/tex] is equal to [tex]\( x \)[/tex]. Therefore:
[tex]\[ b = x = 6 \][/tex]

Now, we substitute the known values into the expression [tex]\( (a + b + y) \)[/tex]:

[tex]\[ (a + b + y) = (4 + 6 + 8) \][/tex]

Start by adding [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ 4 + 6 = 10 \][/tex]

Next, add the result to [tex]\( y \)[/tex]:
[tex]\[ 10 + 8 = 18 \][/tex]

Therefore, the value of [tex]\( (a + b + y) \)[/tex] is [tex]\(\boxed{18}\)[/tex].