To find the value of [tex]\( (a + b + y) \)[/tex], we need to know the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( y \)[/tex].
Given:
[tex]\[ x = 6 \][/tex]
[tex]\[ y = 8 \][/tex]
[tex]\[ a = 4 \][/tex]
Let's assume that [tex]\( b \)[/tex] is equal to [tex]\( x \)[/tex]. Therefore:
[tex]\[ b = x = 6 \][/tex]
Now, we substitute the known values into the expression [tex]\( (a + b + y) \)[/tex]:
[tex]\[
(a + b + y) = (4 + 6 + 8)
\][/tex]
Start by adding [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[
4 + 6 = 10
\][/tex]
Next, add the result to [tex]\( y \)[/tex]:
[tex]\[
10 + 8 = 18
\][/tex]
Therefore, the value of [tex]\( (a + b + y) \)[/tex] is [tex]\(\boxed{18}\)[/tex].