If [tex]$x=8, y=4,$[/tex] and [tex]$a=6,$[/tex] what is the value of [tex][tex]$(b+x)$[/tex][/tex]?

A. 14
B. 12
C. 18
D. 16



Answer :

First, let us denote the values given in the problem:
- [tex]\( x = 8 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- [tex]\( a = 6 \)[/tex]
- We are given multiple choices for [tex]\( b + x \)[/tex]: 14, 12, 18, 16

To find the values of [tex]\( b \)[/tex] corresponding to each possible value of [tex]\( b + x \)[/tex], we start with each option and subtract [tex]\( x \)[/tex] from it.

1. For [tex]\( b + x = 14 \)[/tex]:
[tex]\[ b + 8 = 14 \implies b = 14 - 8 = 6 \][/tex]

2. For [tex]\( b + x = 12 \)[/tex]:
[tex]\[ b + 8 = 12 \implies b = 12 - 8 = 4 \][/tex]

3. For [tex]\( b + x = 18 \)[/tex]:
[tex]\[ b + 8 = 18 \implies b = 18 - 8 = 10 \][/tex]

4. For [tex]\( b + x = 16 \)[/tex]:
[tex]\[ b + 8 = 16 \implies b = 16 - 8 = 8 \][/tex]

Thus, we have calculated the possible values of [tex]\( b \)[/tex]:
[tex]\[ b \in \{6, 4, 10, 8\} \][/tex]

So based on our given problem, the possible values for [tex]\( b \)[/tex] are 6, 4, 10, and 8.