Answer :
Let's solve the problem step-by-step.
Given the values:
- [tex]\( x = 4 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- [tex]\( a = 2 \)[/tex]
We need to determine the value of [tex]\( b \)[/tex].
First, we recognize that the problem involves the relationship between these variables. Without knowing the specific operations required, let's take one possible straightforward approach to combine these values logically:
1. Multiplication and Division Step:
We multiply the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and then divide the result by [tex]\( a \)[/tex]. Mathematically, this can be expressed as:
[tex]\[ b = \frac{x \cdot y}{a} \][/tex]
2. Substitute the given values into the equation:
[tex]\[ b = \frac{4 \cdot 4}{2} \][/tex]
3. Perform the calculations:
[tex]\[ b = \frac{16}{2} \][/tex]
4. Simplify the result:
[tex]\[ b = 8 \][/tex]
Therefore, the value of [tex]\( b \)[/tex] is [tex]\( 8 \)[/tex].
So the correct choice is:
- [tex]\( 8 \)[/tex]
Given the values:
- [tex]\( x = 4 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- [tex]\( a = 2 \)[/tex]
We need to determine the value of [tex]\( b \)[/tex].
First, we recognize that the problem involves the relationship between these variables. Without knowing the specific operations required, let's take one possible straightforward approach to combine these values logically:
1. Multiplication and Division Step:
We multiply the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and then divide the result by [tex]\( a \)[/tex]. Mathematically, this can be expressed as:
[tex]\[ b = \frac{x \cdot y}{a} \][/tex]
2. Substitute the given values into the equation:
[tex]\[ b = \frac{4 \cdot 4}{2} \][/tex]
3. Perform the calculations:
[tex]\[ b = \frac{16}{2} \][/tex]
4. Simplify the result:
[tex]\[ b = 8 \][/tex]
Therefore, the value of [tex]\( b \)[/tex] is [tex]\( 8 \)[/tex].
So the correct choice is:
- [tex]\( 8 \)[/tex]