If [tex]$x=4, y=4$[/tex] and [tex]$a=2$[/tex], what is the value of [tex][tex]$b$[/tex][/tex]?

A. 14
B. 32
C. 8
D. 16



Answer :

Let's solve the problem step-by-step.

Given the values:
- [tex]\( x = 4 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- [tex]\( a = 2 \)[/tex]

We need to determine the value of [tex]\( b \)[/tex].

First, we recognize that the problem involves the relationship between these variables. Without knowing the specific operations required, let's take one possible straightforward approach to combine these values logically:

1. Multiplication and Division Step:

We multiply the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and then divide the result by [tex]\( a \)[/tex]. Mathematically, this can be expressed as:

[tex]\[ b = \frac{x \cdot y}{a} \][/tex]

2. Substitute the given values into the equation:

[tex]\[ b = \frac{4 \cdot 4}{2} \][/tex]

3. Perform the calculations:

[tex]\[ b = \frac{16}{2} \][/tex]

4. Simplify the result:

[tex]\[ b = 8 \][/tex]

Therefore, the value of [tex]\( b \)[/tex] is [tex]\( 8 \)[/tex].

So the correct choice is:
- [tex]\( 8 \)[/tex]