Translate and solve:

Three less than the difference of [tex]$16p$[/tex] and [tex]$15p$[/tex] is equal to the difference of [tex][tex]$p$[/tex][/tex] and [tex]\frac{1}{2}[/tex].



Answer :

First, let's break down the problem step by step.

1. Identify the expressions involved:

- We need to find the difference between [tex]\(16p\)[/tex] and [tex]\(15p\)[/tex].
- After finding this difference, we need to subtract 3 from it.
- Finally, we will set this expression equal to [tex]\(\frac{1}{2}\)[/tex].

2. Calculate the difference between [tex]\(16p\)[/tex] and [tex]\(15p\)[/tex]:

[tex]\[ 16p - 15p = p \][/tex]

3. Subtract 3 from this difference:

[tex]\[ p - 3 \][/tex]

4. Set this expression equal to [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ p - 3 = \frac{1}{2} \][/tex]

5. Solve for [tex]\(p\)[/tex]:

To isolate [tex]\(p\)[/tex], add 3 to both sides of the equation:

[tex]\[ p - 3 + 3 = \frac{1}{2} + 3 \][/tex]

Simplify the right side:

[tex]\[ p = \frac{1}{2} + 3 \][/tex]

Convert 3 to a fraction to add it easily to [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ 3 = \frac{6}{2} \][/tex]

So,

[tex]\[ p = \frac{1}{2} + \frac{6}{2} \][/tex]

Add the fractions:

[tex]\[ p = \frac{1 + 6}{2} = \frac{7}{2} \][/tex]

6. Solution:

The value of [tex]\(p\)[/tex] that satisfies the equation is:

[tex]\[ p = \frac{7}{2} \][/tex]

To summarize:

- The difference [tex]\(16p - 15p\)[/tex] gives us [tex]\(p\)[/tex].
- Subtracting 3 from [tex]\(p\)[/tex] gives us [tex]\(p - 3\)[/tex].
- Setting [tex]\(p - 3\)[/tex] equal to [tex]\(\frac{1}{2}\)[/tex] and solving for [tex]\(p\)[/tex] gives us [tex]\(p = \frac{7}{2}\)[/tex].

Thus, the solution is [tex]\(p = \frac{7}{2}\)[/tex].