Answer :

To solve the given problem, we need to find the value of [tex]\( \frac{5 \sin \theta - 3 \cos \theta}{5 \sin \theta + 3 \cos \theta} \)[/tex]. Given that [tex]\( 5 \cos \theta = 3 \)[/tex], let's go through the steps to determine the required value.

1. Find [tex]\(\cos \theta\)[/tex]:
[tex]\[ 5 \cos \theta = 3 \implies \cos \theta = \frac{3}{5} \][/tex]

2. Determine [tex]\(\sin \theta\)[/tex]:
Utilize the trigonometric identity [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex]:
[tex]\[ \sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 \theta + \frac{9}{25} = 1 \][/tex]
[tex]\[ \sin^2 \theta = 1 - \frac{9}{25} \][/tex]
[tex]\[ \sin^2 \theta = \frac{25}{25} - \frac{9}{25} \][/tex]
[tex]\[ \sin^2 \theta = \frac{16}{25} \][/tex]
[tex]\[ \sin \theta = \sqrt{\frac{16}{25}} \][/tex]
[tex]\[ \sin \theta = \frac{4}{5} \][/tex]

3. Evaluate the numerator [tex]\(5 \sin \theta - 3 \cos \theta\)[/tex]:
[tex]\[ 5 \sin \theta - 3 \cos \theta = 5 \cdot \frac{4}{5} - 3 \cdot \frac{3}{5} \][/tex]
[tex]\[ = 4 - \frac{9}{5} \][/tex]
[tex]\[ = 4 - 1.8 \][/tex]
[tex]\[ = 2.2 \][/tex]

4. Evaluate the denominator [tex]\(5 \sin \theta + 3 \cos \theta\)[/tex]:
[tex]\[ 5 \sin \theta + 3 \cos \theta = 5 \cdot \frac{4}{5} + 3 \cdot \frac{3}{5} \][/tex]
[tex]\[ = 4 + \frac{9}{5} \][/tex]
[tex]\[ = 4 + 1.8 \][/tex]
[tex]\[ = 5.8 \][/tex]

5. Calculate the required value:
[tex]\[ \frac{5 \sin \theta - 3 \cos \theta}{5 \sin \theta + 3 \cos \theta} = \frac{2.2}{5.8} \][/tex]
[tex]\[ \approx 0.37931034482758624 \][/tex]

Therefore, the required value is approximately [tex]\( 0.3793 \)[/tex].