What are the solutions of the quadratic equation [tex]$(x-8)^2-13(x-8)+30=0$[/tex]? Use [tex]$u$[/tex] substitution to solve.

A. [tex]$x=-11$[/tex] and [tex]$x=-18$[/tex]
B. [tex]$x=-2$[/tex] and [tex]$x=5$[/tex]
C. [tex]$x=2$[/tex] and [tex]$x=-5$[/tex]
D. [tex]$x=11$[/tex] and [tex]$x=18$[/tex]



Answer :

Sure, let's solve the quadratic equation [tex]\((x - 8)^2 - 13(x - 8) + 30 = 0\)[/tex] using the substitution method step-by-step.

1. Substitution:

Start by substituting [tex]\( u = x - 8 \)[/tex]. This substitution simplifies our equation into a more standard quadratic form.

[tex]\[ (x - 8)^2 - 13(x - 8) + 30 = u^2 - 13u + 30 = 0 \][/tex]

2. Quadratic Equation:

Now we need to solve the quadratic equation in terms of [tex]\(u\)[/tex]:

[tex]\[ u^2 - 13u + 30 = 0 \][/tex]

3. Quadratic Formula:

The general form of the quadratic equation is [tex]\( au^2 + bu + c = 0 \)[/tex]. Here, [tex]\(a = 1\)[/tex], [tex]\(b = -13\)[/tex], and [tex]\(c = 30\)[/tex]. Using the quadratic formula:

[tex]\[ u = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]

Substituting the values:

[tex]\[ u = \frac{{-(-13) \pm \sqrt{{(-13)^2 - 4 \cdot 1 \cdot 30}}}}{2 \cdot 1} \][/tex]

Simplifying the discriminant:

[tex]\[ u = \frac{{13 \pm \sqrt{{169 - 120}}}}{2} \][/tex]

[tex]\[ u = \frac{{13 \pm \sqrt{49}}}{2} \][/tex]

[tex]\[ u = \frac{{13 \pm 7}}{2} \][/tex]

4. Solving for [tex]\(u\)[/tex]:

This gives us two values for [tex]\(u\)[/tex]:

[tex]\[ u = \frac{{13 + 7}}{2} = \frac{20}{2} = 10 \][/tex]

[tex]\[ u = \frac{{13 - 7}}{2} = \frac{6}{2} = 3 \][/tex]

5. Back Substitution:

We revert back to the original variable [tex]\(x\)[/tex], using the substitution [tex]\( u = x - 8 \)[/tex]:

[tex]\[ u = 10 \Rightarrow x - 8 = 10 \Rightarrow x = 18 \][/tex]

[tex]\[ u = 3 \Rightarrow x - 8 = 3 \Rightarrow x = 11 \][/tex]

6. Solutions:

Therefore, the solutions to the equation [tex]\((x - 8)^2 - 13(x - 8) + 30 = 0\)[/tex] are:

[tex]\[ x = 11 \quad \text{and} \quad x = 18 \][/tex]

So, the correct option is:

[tex]\[ \boxed{x = 11 \text{ and } x = 18} \][/tex]