\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$R 15102,76$[/tex] & [tex]$R 1386,94$[/tex] & [tex]$A$[/tex] & [tex]$R 2090,57$[/tex] & [tex]$R 150397,13$[/tex] \\
\hline
[tex]$B$[/tex] & [tex]$R 1380,49$[/tex] & [tex]$R 151979,62$[/tex] & [tex]$C$[/tex] & [tex]$R 149889,12$[/tex] \\
\hline
\end{tabular}

Complete the table for the three (3) months by calculating the missing values [tex]$(A, B,$[/tex] and [tex]$C$[/tex]).

If you have to draw the graph for the 72 months period, how would you describe the shape of the graph? Give a reason for this shape.

Mr. and Mrs. Mkhize, a newly married couple, are about to buy their first home through a bank. They find a property they like at a price of R2,440,000 (inclusive of transfer and lawyer's fees). Mr. Mkhize managed to raise a deposit of [tex]$25\%$[/tex]. ABC Bank granted a home loan on the balance.

1: BOND REPAYMENT FACTORS

\begin{tabular}{|l|l|}
\hline
Interest [tex]$\%$[/tex] & Years \\
\hline
\end{tabular}



Answer :

Sure! Let's work through this systematically.

### Completing the Table
We need to calculate the values for:
- [tex]\(\Lambda\)[/tex]
- [tex]\(B\)[/tex]
- [tex]\(C\)[/tex]

Given:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline R 15102.76 & R 1386.94 & A & R 2090.57 & R 150397.13 \\ \hline B & R 1380.49 & R 151979.62 & C & R 149889.12 \\ \hline \end{tabular} \][/tex]

1. Calculation of [tex]\(\Lambda\)[/tex]:

[tex]\[ \Lambda = R15102.76 + R1386.94 + R1380.49 \][/tex]
[tex]\[ \Lambda = 15102.76 + 1386.94 + 1380.49 = 17870.19 \][/tex]

2. Calculation of [tex]\(B\)[/tex]:

[tex]\[ B = R151979.62 - R1386.94 - R2090.57 \][/tex]
[tex]\[ B = 151979.62 - 1386.94 - 2090.57 = 148502.11 \][/tex]

3. Calculation of [tex]\(C\)[/tex]:

[tex]\[ C = R151979.62 + R149889.12 - 2 \times R15102.76 \][/tex]
[tex]\[ C = 151979.62 + 149889.12 - 2 \times 15102.76 = 271663.22 \][/tex]

So, the completed table is:

[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline R 15102.76 & R 1386.94 & 17870.19 & R 2090.57 & R 150397.13 \\ \hline 148502.11 & R 1380.49 & R 151979.62 & 271663.22 & R 149889.12 \\ \hline \end{tabular} \][/tex]

### Describing the Graph Shape
Assuming the values represent some sort of time series data over a 72-month period, such as mortgage repayment details:
- The shape of the graph showing the remaining mortgage balance over time would typically start high and gradually decrease.
- This is because each month, mortgage payments reduce the balance. The largest portion of the interest is paid off early, and more principal is paid off in later months.

### Bond Calculation for Mrs. Mkhize
Given:
- Property price: [tex]\(R 2,440,000\)[/tex]
- Deposit percentage: [tex]\(25\%\)[/tex]

4. Deposit Value:

[tex]\[ \text{Deposit Value} = \text{Property Price} \times \text{Deposit Percentage} \][/tex]
[tex]\[ \text{Deposit Value} = 2,440,000 \times 0.25 = 610,000 \][/tex]

5. Balance Loan:

[tex]\[ \text{Loan Balance} = \text{Property Price} - \text{Deposit Value} \][/tex]
[tex]\[ \text{Loan Balance} = 2,440,000 - 610,000 = 1,830,000 \][/tex]

So, the deposit value is [tex]\(R 610,000\)[/tex] and the loan balance is [tex]\(R 1,830,000\)[/tex].

To summarize, we have:
- Completed table values: [tex]\(\Lambda = 17870.19\)[/tex], [tex]\(B = 148502.11\)[/tex], [tex]\(C = 271663.22\)[/tex]
- The graph shape is generally a decreasing curve for mortgage balances.
- Mrs. Mkhize's deposit value is [tex]\(R 610,000\)[/tex] and the remaining loan balance is [tex]\(R 1,830,000\)[/tex].