5. [tex]\( \quad 3400 \, \text{cm}^3 \)[/tex] of [tex]\( \text{SO}_2 \)[/tex] gas is at STP.

5.1 How many [tex]\( \text{dm}^3 \)[/tex] of [tex]\( \text{SO}_2 \)[/tex] gas does this represent?

5.2 How many mol of [tex]\( \text{SO}_2 \)[/tex] gas is present?
[tex]\[ n = \frac{v}{\text{molar volume at STP}} \][/tex]

5.3 What mass of [tex]\( \text{SO}_2 \)[/tex] gas does this represent?

Calculate the number of mol of gas in each flask.

6. Three flasks each contain [tex]\( 3.0 \, \text{dm}^3 \)[/tex] of a different gas at STP.

6.1 Calculate the number of mol of gas in each flask.

6.2 Calculate the number of particles in each flask.

6.3 Calculate the mass of gas in each flask.



Answer :

Sure, let's break this down step by step:

### Problem 5
Given:
3400 cm³ of SO₂ gas at STP.

#### 5.1 How many dm³ of SO₂ gas does this represent?

- Conversion: 1 dm³ = 1000 cm³.
- To convert 3400 cm³ to dm³:

[tex]\[ \frac{3400 \text{ cm}^3}{1000} = 3.4 \text{ dm}^3 \][/tex]

So, 3400 cm³ of SO₂ gas equals 3.4 dm³ of SO₂ gas.

#### 5.2 How many moles of SO₂ gas is present?
[tex]\[ n = \frac{V}{V_m} \][/tex]
where [tex]\( V \)[/tex] is the volume (3.4 dm³) and [tex]\( V_m \)[/tex] is the molar volume at STP (22.4 dm³/mol).

[tex]\[ n = \frac{3.4 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 0.1518 \text{ mol} \][/tex]

So, there are approximately 0.1518 moles of SO₂ gas present.

#### 5.3 What mass of SO₂ gas does this represent?

Molar mass of SO₂:
- Sulfur (S): 32.06 g/mol.
- Oxygen (O): 16.00 g/mol.
- SO₂: [tex]\( 32.06 + 2 \times 16.00 = 64.06 \)[/tex] g/mol.

Mass of SO₂:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.1518 \text{ mol} \times 64.06 \text{ g/mol} \approx 9.7234 \text{ g} \][/tex]

So, 3400 cm³ of SO₂ gas represents approximately 9.7234 grams of SO₂.

### Problem 6
Given:
Three flasks each contain 3.0 dm³ of a different gas at STP.

#### 6.1 Calculate the number of moles of gas in each flask.

For each flask:
[tex]\[ n = \frac{3.0 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 0.134 \text{ mol} \][/tex]

So, there are approximately 0.134 moles of gas in each flask.

#### 6.2 Calculate the number of particles in each flask.

Using Avogadro's number ([tex]\( 6.022 \times 10^{23} \)[/tex] particles/mol):

[tex]\[ \text{Number of particles} = \text{moles} \times \text{Avogadro's number} \][/tex]
[tex]\[ \text{Number of particles} = 0.134 \text{ mol} \times 6.022 \times 10^{23} \text{ particles/mol} \approx 8.065 \times 10^{22} \text{ particles} \][/tex]

So, each flask contains approximately [tex]\( 8.065 \times 10^{22} \)[/tex] particles.

#### 6.3 Calculate the mass of gas in each flask.

Assuming all gases are SO₂ (for this question):
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.134 \text{ mol} \times 64.06 \text{ g/mol} \approx 8.5795 \text{ g} \][/tex]

So, the mass of gas in each flask is approximately 8.5795 grams of SO₂.

In summary:
1. 3400 cm³ of SO₂ gas is 3.4 dm³.
2. This corresponds to approximately 0.1518 moles of SO₂ gas.
3. This translates to approximately 9.7234 grams of SO₂ gas.
4. Each flask with 3.0 dm³ of gas at STP contains approximately 0.134 moles.
5. Each flask contains around [tex]\( 8.065 \times 10^{22} \)[/tex] particles.
6. Each flask contains approximately 8.5795 grams of SO₂.