Answer :
Sure, let's break this down step by step:
### Problem 5
Given:
3400 cm³ of SO₂ gas at STP.
#### 5.1 How many dm³ of SO₂ gas does this represent?
- Conversion: 1 dm³ = 1000 cm³.
- To convert 3400 cm³ to dm³:
[tex]\[ \frac{3400 \text{ cm}^3}{1000} = 3.4 \text{ dm}^3 \][/tex]
So, 3400 cm³ of SO₂ gas equals 3.4 dm³ of SO₂ gas.
#### 5.2 How many moles of SO₂ gas is present?
[tex]\[ n = \frac{V}{V_m} \][/tex]
where [tex]\( V \)[/tex] is the volume (3.4 dm³) and [tex]\( V_m \)[/tex] is the molar volume at STP (22.4 dm³/mol).
[tex]\[ n = \frac{3.4 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 0.1518 \text{ mol} \][/tex]
So, there are approximately 0.1518 moles of SO₂ gas present.
#### 5.3 What mass of SO₂ gas does this represent?
Molar mass of SO₂:
- Sulfur (S): 32.06 g/mol.
- Oxygen (O): 16.00 g/mol.
- SO₂: [tex]\( 32.06 + 2 \times 16.00 = 64.06 \)[/tex] g/mol.
Mass of SO₂:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.1518 \text{ mol} \times 64.06 \text{ g/mol} \approx 9.7234 \text{ g} \][/tex]
So, 3400 cm³ of SO₂ gas represents approximately 9.7234 grams of SO₂.
### Problem 6
Given:
Three flasks each contain 3.0 dm³ of a different gas at STP.
#### 6.1 Calculate the number of moles of gas in each flask.
For each flask:
[tex]\[ n = \frac{3.0 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 0.134 \text{ mol} \][/tex]
So, there are approximately 0.134 moles of gas in each flask.
#### 6.2 Calculate the number of particles in each flask.
Using Avogadro's number ([tex]\( 6.022 \times 10^{23} \)[/tex] particles/mol):
[tex]\[ \text{Number of particles} = \text{moles} \times \text{Avogadro's number} \][/tex]
[tex]\[ \text{Number of particles} = 0.134 \text{ mol} \times 6.022 \times 10^{23} \text{ particles/mol} \approx 8.065 \times 10^{22} \text{ particles} \][/tex]
So, each flask contains approximately [tex]\( 8.065 \times 10^{22} \)[/tex] particles.
#### 6.3 Calculate the mass of gas in each flask.
Assuming all gases are SO₂ (for this question):
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.134 \text{ mol} \times 64.06 \text{ g/mol} \approx 8.5795 \text{ g} \][/tex]
So, the mass of gas in each flask is approximately 8.5795 grams of SO₂.
In summary:
1. 3400 cm³ of SO₂ gas is 3.4 dm³.
2. This corresponds to approximately 0.1518 moles of SO₂ gas.
3. This translates to approximately 9.7234 grams of SO₂ gas.
4. Each flask with 3.0 dm³ of gas at STP contains approximately 0.134 moles.
5. Each flask contains around [tex]\( 8.065 \times 10^{22} \)[/tex] particles.
6. Each flask contains approximately 8.5795 grams of SO₂.
### Problem 5
Given:
3400 cm³ of SO₂ gas at STP.
#### 5.1 How many dm³ of SO₂ gas does this represent?
- Conversion: 1 dm³ = 1000 cm³.
- To convert 3400 cm³ to dm³:
[tex]\[ \frac{3400 \text{ cm}^3}{1000} = 3.4 \text{ dm}^3 \][/tex]
So, 3400 cm³ of SO₂ gas equals 3.4 dm³ of SO₂ gas.
#### 5.2 How many moles of SO₂ gas is present?
[tex]\[ n = \frac{V}{V_m} \][/tex]
where [tex]\( V \)[/tex] is the volume (3.4 dm³) and [tex]\( V_m \)[/tex] is the molar volume at STP (22.4 dm³/mol).
[tex]\[ n = \frac{3.4 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 0.1518 \text{ mol} \][/tex]
So, there are approximately 0.1518 moles of SO₂ gas present.
#### 5.3 What mass of SO₂ gas does this represent?
Molar mass of SO₂:
- Sulfur (S): 32.06 g/mol.
- Oxygen (O): 16.00 g/mol.
- SO₂: [tex]\( 32.06 + 2 \times 16.00 = 64.06 \)[/tex] g/mol.
Mass of SO₂:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.1518 \text{ mol} \times 64.06 \text{ g/mol} \approx 9.7234 \text{ g} \][/tex]
So, 3400 cm³ of SO₂ gas represents approximately 9.7234 grams of SO₂.
### Problem 6
Given:
Three flasks each contain 3.0 dm³ of a different gas at STP.
#### 6.1 Calculate the number of moles of gas in each flask.
For each flask:
[tex]\[ n = \frac{3.0 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 0.134 \text{ mol} \][/tex]
So, there are approximately 0.134 moles of gas in each flask.
#### 6.2 Calculate the number of particles in each flask.
Using Avogadro's number ([tex]\( 6.022 \times 10^{23} \)[/tex] particles/mol):
[tex]\[ \text{Number of particles} = \text{moles} \times \text{Avogadro's number} \][/tex]
[tex]\[ \text{Number of particles} = 0.134 \text{ mol} \times 6.022 \times 10^{23} \text{ particles/mol} \approx 8.065 \times 10^{22} \text{ particles} \][/tex]
So, each flask contains approximately [tex]\( 8.065 \times 10^{22} \)[/tex] particles.
#### 6.3 Calculate the mass of gas in each flask.
Assuming all gases are SO₂ (for this question):
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.134 \text{ mol} \times 64.06 \text{ g/mol} \approx 8.5795 \text{ g} \][/tex]
So, the mass of gas in each flask is approximately 8.5795 grams of SO₂.
In summary:
1. 3400 cm³ of SO₂ gas is 3.4 dm³.
2. This corresponds to approximately 0.1518 moles of SO₂ gas.
3. This translates to approximately 9.7234 grams of SO₂ gas.
4. Each flask with 3.0 dm³ of gas at STP contains approximately 0.134 moles.
5. Each flask contains around [tex]\( 8.065 \times 10^{22} \)[/tex] particles.
6. Each flask contains approximately 8.5795 grams of SO₂.