Answer :
To solve the problem of dividing [tex]\( 3. \overline{21} \)[/tex] by [tex]\( 0. \overline{5} \)[/tex], we need to first represent these repeating decimals as fractions.
1. Step 1: Convert the repeating decimals to fractions
- For [tex]\( 3. \overline{21} \)[/tex]:
[tex]\[ x = 3.21212121\ldots \][/tex]
Let’s multiply both sides by 100 (because there are two repeating digits):
[tex]\[ 100x = 321.21212121\ldots \][/tex]
Now, subtract the original [tex]\( x \)[/tex]:
[tex]\[ 100x - x = 321.21212121\ldots - 3.21212121\ldots \][/tex]
This simplifies to:
[tex]\[ 99x = 318 \][/tex]
So,
[tex]\[ x = \frac{318}{99} = \frac{106}{33} \quad (\text{after simplification}) \][/tex]
Therefore,
[tex]\[ 3. \overline{21} = 3 + \frac{21}{99} = 3 + \frac{7}{33} = \frac{106}{33} \][/tex]
- For [tex]\( 0. \overline{5} \)[/tex]:
[tex]\[ y = 0.555555\ldots \][/tex]
Let’s multiply both sides by 10 (because there's one repeating digit):
[tex]\[ 10y = 5.555555\ldots \][/tex]
Now, subtract the original [tex]\( y \)[/tex]:
[tex]\[ 10y - y = 5.555555\ldots - 0.555555\ldots \][/tex]
This simplifies to:
[tex]\[ 9y = 5 \][/tex]
So,
[tex]\[ y = \frac{5}{9} \][/tex]
Therefore,
[tex]\[ 0. \overline{5} = \frac{5}{9} \][/tex]
2. Step 2: Perform the division
- We need to divide [tex]\( \frac{106}{33} \)[/tex] by [tex]\( \frac{5}{9} \)[/tex]
[tex]\[ \frac{106}{33} \div \frac{5}{9} = \frac{106}{33} \times \frac{9}{5} = \frac{106 \times 9}{33 \times 5} = \frac{954}{165} \][/tex]
Simplify [tex]\( \frac{954}{165} \)[/tex]:
[tex]\[ \frac{954 \div 3}{165 \div 3} = \frac{318}{55} \][/tex]
Finally, dividing [tex]\( 318 \)[/tex] by [tex]\( 55 \)[/tex]:
[tex]\[ 318 \div 55 \approx 5.781818181818181 \][/tex]
Therefore, the value of [tex]\( 3. \overline{21} \div 0. \overline{5} \)[/tex] is approximately [tex]\( 5.781818181818181 \)[/tex].
1. Step 1: Convert the repeating decimals to fractions
- For [tex]\( 3. \overline{21} \)[/tex]:
[tex]\[ x = 3.21212121\ldots \][/tex]
Let’s multiply both sides by 100 (because there are two repeating digits):
[tex]\[ 100x = 321.21212121\ldots \][/tex]
Now, subtract the original [tex]\( x \)[/tex]:
[tex]\[ 100x - x = 321.21212121\ldots - 3.21212121\ldots \][/tex]
This simplifies to:
[tex]\[ 99x = 318 \][/tex]
So,
[tex]\[ x = \frac{318}{99} = \frac{106}{33} \quad (\text{after simplification}) \][/tex]
Therefore,
[tex]\[ 3. \overline{21} = 3 + \frac{21}{99} = 3 + \frac{7}{33} = \frac{106}{33} \][/tex]
- For [tex]\( 0. \overline{5} \)[/tex]:
[tex]\[ y = 0.555555\ldots \][/tex]
Let’s multiply both sides by 10 (because there's one repeating digit):
[tex]\[ 10y = 5.555555\ldots \][/tex]
Now, subtract the original [tex]\( y \)[/tex]:
[tex]\[ 10y - y = 5.555555\ldots - 0.555555\ldots \][/tex]
This simplifies to:
[tex]\[ 9y = 5 \][/tex]
So,
[tex]\[ y = \frac{5}{9} \][/tex]
Therefore,
[tex]\[ 0. \overline{5} = \frac{5}{9} \][/tex]
2. Step 2: Perform the division
- We need to divide [tex]\( \frac{106}{33} \)[/tex] by [tex]\( \frac{5}{9} \)[/tex]
[tex]\[ \frac{106}{33} \div \frac{5}{9} = \frac{106}{33} \times \frac{9}{5} = \frac{106 \times 9}{33 \times 5} = \frac{954}{165} \][/tex]
Simplify [tex]\( \frac{954}{165} \)[/tex]:
[tex]\[ \frac{954 \div 3}{165 \div 3} = \frac{318}{55} \][/tex]
Finally, dividing [tex]\( 318 \)[/tex] by [tex]\( 55 \)[/tex]:
[tex]\[ 318 \div 55 \approx 5.781818181818181 \][/tex]
Therefore, the value of [tex]\( 3. \overline{21} \div 0. \overline{5} \)[/tex] is approximately [tex]\( 5.781818181818181 \)[/tex].