How many workers earned a weekly wage of at least \[tex]$300?

\ \textless \ strong\ \textgreater \ Weekly Wages of 25 Workers\ \textless \ /strong\ \textgreater \
\begin{tabular}{|c|c|}
\hline Weekly Wages in \$[/tex] & Absolute Frequency \\
\hline \[tex]$220-\$[/tex]234 & 2 \\
\hline \[tex]$235-\$[/tex]249 & 3 \\
\hline \[tex]$250-\$[/tex]264 & 7 \\
\hline \[tex]$265-\$[/tex]279 & 3 \\
\hline \[tex]$280-\$[/tex]294 & 8 \\
\hline \[tex]$295-\$[/tex]309 & 1 \\
\hline \[tex]$310-\$[/tex]329 & 1 \\
\hline
\end{tabular}



Answer :

To determine how many workers earned a weekly wage or at least [tex]${data-answer}lt;00, we need to look at the absolute frequency of the groups presented in the table and sum them up accordingly. Let's break the provided table down and calculate the total number of workers. \[ \begin{array}{|c|c|c|c|} \hline \text{Weekly Wages in \$[/tex]} & \text{Absolute Frequency (Counts)} & \text{Absolute Frequency (Number)} \\
\hline 220-234 & II & 2 \\
\hline 235-249 & III & 3 \\
\hline 250-264 & IIII II & 5 \\
\hline 265-279 & III & 3 \\
\hline 280-294 & IIII III & 7 \\
\hline 295-309 & I & 1 \\
\hline 310-329 & I & 1 \\
\hline
\end{array}
\]

Now, sum up the number of workers from each wage bracket:

[tex]\[ 2 (\text{workers in the } 220-234 \text{ range}) + 3 (\text{workers in the } 235-249 \text{ range}) + 5 (\text{workers in the } 250-264 \text{ range}) \][/tex]
[tex]\[ + 3 (\text{workers in the } 265-279 \text{ range}) + 7 (\text{workers in the } 280-294 \text{ range}) + 1 (\text{worker in the } 295-309 \text{ range}) + 1 (\text{worker in the } 310-329 \text{ range}) \][/tex]

Adding them together:

[tex]\[ 2 + 3 + 5 + 3 + 7 + 1 + 1 = 22 \][/tex]

Conclusion:
There are 22 workers total. This means all the weekly wages sums for workers provided add up to 22 workers who earned a weekly wage of at least ${data-answer}lt;00.