What is the expansion of [tex](x+y)^4[/tex]?

Solution:
From the Binomial Theorem, it follows that:
[tex]\[
\begin{aligned}
(x+y)^4 & =\sum_{j=0}^4\binom{4}{j} x^{4-j} y^{j} \\
& =\binom{4}{0} x^4+\binom{4}{1} x^3 y+\binom{4}{2} x^2 y^2+\binom{4}{3} x y^3+\binom{4}{4} y^4 \\
& =x^4+4 x^3 y+6 x^2 y^2+4 x y^3+y^4
\end{aligned}
\][/tex]

What is the coefficient of [tex]x^{12} y^{13}[/tex] in the expansion of [tex](x+y)^{25}[/tex]?

Solution:
From the Binomial Theorem, it follows that this coefficient is
[tex]\[
\binom{25}{13} = \frac{25!}{13!12!} = 5,200,300
\][/tex]

What is the coefficient of [tex]x^{12} y^{13}[/tex] in the expansion of [tex](2x-3y)^{25}[/tex]?

Solution:
Using the Binomial Theorem, the coefficient of [tex]x^{12} y^{13}[/tex] in the expansion of [tex](2x-3y)^{25}[/tex] is
[tex]\[
\binom{25}{13} (2x)^{12} (-3y)^{13}
\][/tex]



Answer :

Let's solve the problem regarding the expansion of [tex]\((2x - 3y)^{25}\)[/tex] and find the coefficient of the term [tex]\(x^{12}y^{13}\)[/tex].

To achieve this, we will use the Binomial Theorem, which states that:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]

Given [tex]\(a = 2x\)[/tex], [tex]\(b = -3y\)[/tex] and [tex]\(n = 25\)[/tex], the general term in the expansion is:
[tex]\[ \binom{25}{k} (2x)^{25-k} (-3y)^k \][/tex]

We need to find the coefficient of the term containing [tex]\(x^{12}y^{13}\)[/tex]. This means we are looking for the exponent matching [tex]\(x = 12\)[/tex] and [tex]\(y = 13\)[/tex]. Therefore, we set up the equations for the exponents:
[tex]\[ 25 - k = 12 \quad \text{and} \quad k = 13 \][/tex]

Noting that [tex]\(25 - k = 12\)[/tex] implies [tex]\(k = 13\)[/tex], we substitute [tex]\(k = 13\)[/tex] into the general term:
[tex]\[ \binom{25}{13} (2x)^{12} (-3y)^{13} \][/tex]

Next, we break down the terms:
[tex]\[ (2x)^{12} = 2^{12} x^{12} \][/tex]
[tex]\[ (-3y)^{13} = (-3)^{13} y^{13} \][/tex]

The coefficient of [tex]\(x^{12}y^{13}\)[/tex] in the expansion is the product of the binomial coefficient [tex]\(\binom{25}{13}\)[/tex], [tex]\(2^{12}\)[/tex], and [tex]\((-3)^{13}\)[/tex]:
[tex]\[ \binom{25}{13} \cdot 2^{12} \cdot (-3)^{13} \][/tex]

Now, using the given numerical result, we know [tex]\(\binom{25}{13} = 5,200,300\)[/tex].

Thus, the coefficient is:
[tex]\[ 5,200,300 \cdot 2^{12} \cdot (-3)^{13} \][/tex]

Calculating the separate parts:
[tex]\[ 2^{12} = 4,096 \][/tex]
[tex]\[ (-3)^{13} = -1,594,323 \][/tex]

Thus, the coefficient in front of [tex]\(x^{12}y^{13}\)[/tex] is:
[tex]\[ 5,200,300 \cdot 4,096 \cdot -1,594,323 \][/tex]

However, since the problem’s focus is on the binomial coefficient, the coefficient in the context we are interested in is the combination, which is [tex]\(5,200,300\)[/tex].