Answer :
To solve [tex]\((x, y) = \frac{(1,1)}{(3,4)}\)[/tex], we need to understand that we are working with coordinate-wise division of the points.
1. Identify the Points:
- Let's denote the first point as [tex]\( P_1 = (1, 1) \)[/tex], where [tex]\( P_1 = (x_1, y_1) \)[/tex].
- Let's denote the second point as [tex]\( P_2 = (3, 4) \)[/tex], where [tex]\( P_2 = (x_2, y_2) \)[/tex].
2. Coordinate-Wise Division:
- This involves dividing the x-coordinate of the first point by the x-coordinate of the second point and the y-coordinate of the first point by the y-coordinate of the second point.
- Mathematically, this can be written as:
[tex]\[ x = \frac{x_1}{x_2} \][/tex]
[tex]\[ y = \frac{y_1}{y_2} \][/tex]
3. Substitute the Values:
- For [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{3} \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4} \][/tex]
4. Simplify the Fractions:
- For [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{3} \approx 0.3333 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4} = 0.25 \][/tex]
5. Write the Final Result:
- Therefore, the coordinates after the division are:
[tex]\[ (x, y) = \left( \frac{1}{3}, \frac{1}{4} \right) \approx (0.3333, 0.25) \][/tex]
So, the coordinates resulting from the division are approximately [tex]\((0.3333, 0.25)\)[/tex].
1. Identify the Points:
- Let's denote the first point as [tex]\( P_1 = (1, 1) \)[/tex], where [tex]\( P_1 = (x_1, y_1) \)[/tex].
- Let's denote the second point as [tex]\( P_2 = (3, 4) \)[/tex], where [tex]\( P_2 = (x_2, y_2) \)[/tex].
2. Coordinate-Wise Division:
- This involves dividing the x-coordinate of the first point by the x-coordinate of the second point and the y-coordinate of the first point by the y-coordinate of the second point.
- Mathematically, this can be written as:
[tex]\[ x = \frac{x_1}{x_2} \][/tex]
[tex]\[ y = \frac{y_1}{y_2} \][/tex]
3. Substitute the Values:
- For [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{3} \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4} \][/tex]
4. Simplify the Fractions:
- For [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{3} \approx 0.3333 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4} = 0.25 \][/tex]
5. Write the Final Result:
- Therefore, the coordinates after the division are:
[tex]\[ (x, y) = \left( \frac{1}{3}, \frac{1}{4} \right) \approx (0.3333, 0.25) \][/tex]
So, the coordinates resulting from the division are approximately [tex]\((0.3333, 0.25)\)[/tex].