Rewrite the following to make sense.
-----

Given [tex]\((x, y)\)[/tex], solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] if:
[tex]\[\frac{(x, y)}{(3, 4)} = (1, 1)\][/tex]



Answer :

To solve [tex]\((x, y) = \frac{(1,1)}{(3,4)}\)[/tex], we need to understand that we are working with coordinate-wise division of the points.

1. Identify the Points:
- Let's denote the first point as [tex]\( P_1 = (1, 1) \)[/tex], where [tex]\( P_1 = (x_1, y_1) \)[/tex].
- Let's denote the second point as [tex]\( P_2 = (3, 4) \)[/tex], where [tex]\( P_2 = (x_2, y_2) \)[/tex].

2. Coordinate-Wise Division:
- This involves dividing the x-coordinate of the first point by the x-coordinate of the second point and the y-coordinate of the first point by the y-coordinate of the second point.
- Mathematically, this can be written as:
[tex]\[ x = \frac{x_1}{x_2} \][/tex]
[tex]\[ y = \frac{y_1}{y_2} \][/tex]

3. Substitute the Values:
- For [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{3} \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4} \][/tex]

4. Simplify the Fractions:
- For [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{3} \approx 0.3333 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{4} = 0.25 \][/tex]

5. Write the Final Result:
- Therefore, the coordinates after the division are:
[tex]\[ (x, y) = \left( \frac{1}{3}, \frac{1}{4} \right) \approx (0.3333, 0.25) \][/tex]

So, the coordinates resulting from the division are approximately [tex]\((0.3333, 0.25)\)[/tex].