Write the expression "the sum of seven times a number and five, divided by the sum of negative two times the number and eleven" using algebra. Choose the correct phrase below.

A. [tex]\[ \frac{7x + 5}{-2x + 11} \][/tex]

B. [tex]\[ (-2x + 11) \div (7x + 5) \][/tex]

C. [tex]\[ (-2x + 11) + \left( 7x \div 5 \right) \][/tex]

D. [tex]\[ (7x + 5) + \left( -2x \div 11 \right) \][/tex]



Answer :

Let's break down the expression step by step:

1. Identify the components:
- "Seven times a number" can be represented as [tex]\(7x\)[/tex].
- "The sum of seven times a number and five" translates to [tex]\(7x + 5\)[/tex].
- "Negative two times the number" is [tex]\(-2x\)[/tex].
- "The sum of negative two times the number and eleven" is [tex]\(-2x + 11\)[/tex].

2. Combine the components into a fraction as described:
- The part "The sum of seven times a number and five" forms the numerator: [tex]\(7x + 5\)[/tex].
- The part "The sum of negative two times the number and eleven" forms the denominator: [tex]\(-2x + 11\)[/tex].

So the entire expression is:
[tex]\[ \frac{7x + 5}{-2x + 11} \][/tex]

Now, let's choose the correct phrase from the given options:

1. [tex]\(\frac{-2x + 11}{7x + 5}\)[/tex]
2. [tex]\((-2x + 11) + (7x \div 5)\)[/tex]
3. [tex]\((7x + 5) + (-2x \div 11)\)[/tex]
4. [tex]\(\frac{7x + 5}{-2x + 11}\)[/tex]

The correct answer is:
[tex]\[ (7x + 5) \div (-2x + 11) \][/tex]

So, the correct phrase is:
[tex]\[ (7 x+5) \div (-2 x+11) \][/tex]