Construct a [tex]90\%[/tex] confidence interval for a sampling distribution that has means of:

[tex]\[ \{4.4, 4.4, 4.4, 4.2, 4.2, 4.3, 4.3, 4.3, 4.4, 4.4, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.9, 4.9, 4.9, 4.9\} \][/tex]



Answer :

To construct a [tex]\(90\%\)[/tex] confidence interval for a sampling distribution with the given sample means, we follow these steps:

1. List the Sample Means:
The sample means given are:
[tex]\[ \{4, 4, 4, 4.2, 4.2, 4.3, 4.3, 4.3, 4.4, 4.4, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.9, 4.9, 4.9, 4.9\} \][/tex]

2. Calculate the Sample Mean ([tex]\(\bar{x}\)[/tex]):
The sample mean is calculated as:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
Given:
[tex]\[ \bar{x} = 4.504 \][/tex]

3. Calculate the Sample Standard Deviation (s):
Using the formula for sample standard deviation:
[tex]\[ s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \][/tex]
Given:
[tex]\[ s = 0.2979 \][/tex]

4. Determine the Sample Size (n):
The number of samples given is:
[tex]\[ n = 25 \][/tex]

5. Determine the Degree of Freedom (df):
Degrees of freedom for the t-distribution is:
[tex]\[ df = n - 1 = 25 - 1 = 24 \][/tex]

6. Find the t-Critical Value (t_*):
For a [tex]\(90\%\)[/tex] confidence level and [tex]\(24\)[/tex] degrees of freedom, the critical t-value is:
[tex]\[ t_* = 1.7109 \][/tex]

7. Calculate the Standard Error of the Mean (SE):
The standard error of the mean is given by:
[tex]\[ SE = \frac{s}{\sqrt{n}} \][/tex]
Given:
[tex]\[ SE = 0.0596 \][/tex]

8. Determine the Margin of Error (ME):
The margin of error is calculated as:
[tex]\[ ME = t_* \times SE \][/tex]
Given:
[tex]\[ ME = 0.1019 \][/tex]

9. Construct the Confidence Interval:
The [tex]\(90\%\)[/tex] confidence interval for the mean is:
[tex]\[ \left( \bar{x} - ME, \bar{x} + ME \right) \][/tex]
Substituting the values:
[tex]\[ \left( 4.504 - 0.1019, 4.504 + 0.1019 \right) \][/tex]
Thus:
[tex]\[ \left( 4.4021, 4.6059 \right) \][/tex]

Therefore, the [tex]\(90\%\)[/tex] confidence interval for the given sampling distribution is [tex]\(\left( 4.4021, 4.6059 \right)\)[/tex].