1. [tex]\(\frac{3 \pi}{4}\)[/tex] in degree measure is

(a) [tex]\(45^{\circ}\)[/tex]

(b) [tex]\(180^{\circ}\)[/tex]

(c) [tex]\(270^{\circ}\)[/tex]

(d) [tex]\(135^{\circ}\)[/tex]



Answer :

To convert an angle from radians to degrees, we need to know the relationship between radians and degrees. This relationship is given by the fact that [tex]\( \pi \)[/tex] radians is equivalent to [tex]\( 180^\circ \)[/tex].

Let's convert the given angle [tex]\( \frac{3 \pi}{4} \)[/tex] radians to degrees step by step.

1. We know that [tex]\( \pi \)[/tex] radians is equal to [tex]\( 180^\circ \)[/tex].

2. To find the angle in degrees, we can set up a proportion:
[tex]\[ \frac{3 \pi}{4} \text{ radians} \times \frac{180^\circ}{\pi \text{ radians}} \][/tex]

3. Notice that the [tex]\( \pi \)[/tex] in the numerator and denominator cancels out:
[tex]\[ \frac{3 \times 180^\circ}{4} \][/tex]

4. Multiply the numbers in the fraction:
[tex]\[ \frac{540^\circ}{4} = 135^\circ \][/tex]

Therefore, the angle [tex]\( \frac{3 \pi}{4} \)[/tex] radians is exactly [tex]\( 135^\circ \)[/tex]. Hence, the correct answer is:

(d) [tex]\( 135^\circ \)[/tex]