First, note that this expression equals [tex]$(2x + (-3y))^2$[/tex].

[tex](-3y)^2 = \sum_{j=0}^{25} \binom{25}{j} (2x)^{25-j} (-3y)^j[/tex]

[tex]\frac{d}{dx} \left( \frac{1}{3!} \div 4x \right)[/tex]

The coefficient of [tex]x^{12} y^{13}[/tex] in the expansion is obtained as

[tex]\binom{25}{13} \cdot (2)^{12} \cdot (-3)^{13} = -\frac{25!}{13!12!} \cdot 2^{12} \cdot 3^{13}[/tex]

[tex]\left( \frac{d!}{3!} \right)[/tex]



Answer :

It looks like you've got some pieces of an algebraic expression and its expansion, but the notation is somewhat unclear. Let's try to work through the expansion of [tex]\((2x - 3y)^{25}\)[/tex] step by step to find the coefficient of [tex]\(x^{12}y^{13}\)[/tex].

We're expanding [tex]\((2x - 3y)^{25}\)[/tex] using the binomial theorem, which states:

[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]

In our case, [tex]\(a = 2x\)[/tex], [tex]\(b = -3y\)[/tex], and [tex]\(n = 25\)[/tex]. Thus, the expansion is:

[tex]\[ (2x - 3y)^{25} = \sum_{k=0}^{25} \binom{25}{k} (2x)^{25-k} (-3y)^k \][/tex]

We want the coefficient of the term [tex]\(x^{12} y^{13}\)[/tex]. This means we need to find [tex]\(k\)[/tex] such that the power of [tex]\(x\)[/tex] is 12 and the power of [tex]\(y\)[/tex] is 13.

Since [tex]\((2x)^{25-k} \)[/tex] and [tex]\( (-3y)^k \)[/tex], make:
[tex]\[ (2x)^{25-k} = 2^{25-k} x^{25-k} \][/tex]
[tex]\[ (-3y)^k = (-3)^k y^k \][/tex]

We want:
[tex]\[ 25 - k = 12 \quad \text{(for the power of } x \text{)} \][/tex]
[tex]\[ k = 13 \quad \text{(for the power of } y \text{)} \][/tex]

The value of [tex]\(k\)[/tex] is 13. Now, substitute [tex]\(k\)[/tex] back into the binomial coefficient and the terms:
[tex]\[ \binom{25}{13} (2)^{25-13} (-3)^{13} x^{12} y^{13} \][/tex]

Calculate the coefficient:
[tex]\[ \binom{25}{13} = \frac{25!}{13! \cdot 12!} \][/tex]

Therefore:
[tex]\[ 2^{12} \][/tex]
[tex]\[ (-3)^{13} \][/tex]

Putting it together, the coefficient is:
[tex]\[ \binom{25}{13} \cdot 2^{12} \cdot (-3)^{13} \][/tex]
[tex]\[ = \frac{25!}{13! \cdot 12!} \cdot 2^{12} \cdot (-3)^{13} \][/tex]

The final expression for the coefficient of [tex]\(x^{12} y^{13}\)[/tex] is:
[tex]\[ \frac{25!}{13! \cdot 12!} \cdot 2^{12} \cdot (-3)^{13} \][/tex]