Answer :

To distribute and create an equivalent expression with the fewest symbols possible, we will apply the distributive property of multiplication over addition (or subtraction).

Given the expression:
[tex]\[ (6m - 7) \cdot 4 \][/tex]

We will distribute the 4 to each term inside the parentheses:

1. Distribute the 4 to the term [tex]\( 6m \)[/tex]:
[tex]\[ 4 \cdot 6m = 24m \][/tex]

2. Distribute the 4 to the term [tex]\(-7\)[/tex]:
[tex]\[ 4 \cdot (-7) = -28 \][/tex]

So, the expression:
[tex]\[ (6m - 7) \cdot 4 \][/tex]

becomes:
[tex]\[ 24m - 28 \][/tex]

Thus, the equivalent expression with the fewest symbols possible is:
[tex]\[ 24m - 28 \][/tex]

So we fill in the blank:
[tex]\[ (6m - 7) \cdot 4 = 24m - 28 \][/tex]