To distribute and create an equivalent expression with the fewest symbols possible, we will apply the distributive property of multiplication over addition (or subtraction).
Given the expression:
[tex]\[
(6m - 7) \cdot 4
\][/tex]
We will distribute the 4 to each term inside the parentheses:
1. Distribute the 4 to the term [tex]\( 6m \)[/tex]:
[tex]\[
4 \cdot 6m = 24m
\][/tex]
2. Distribute the 4 to the term [tex]\(-7\)[/tex]:
[tex]\[
4 \cdot (-7) = -28
\][/tex]
So, the expression:
[tex]\[
(6m - 7) \cdot 4
\][/tex]
becomes:
[tex]\[
24m - 28
\][/tex]
Thus, the equivalent expression with the fewest symbols possible is:
[tex]\[
24m - 28
\][/tex]
So we fill in the blank:
[tex]\[
(6m - 7) \cdot 4 = 24m - 28
\][/tex]