Answer :

Let's evaluate the expression [tex]\( 3a^2 - 7b \)[/tex] step-by-step when [tex]\( a = 3 \)[/tex] and [tex]\( b = -8 \)[/tex]:

1. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the expression:
[tex]\[ 3a^2 - 7b \quad \Rightarrow \quad 3(3)^2 - 7(-8) \][/tex]

2. Calculate [tex]\( a^2 \)[/tex]:
[tex]\[ (3)^2 = 9 \][/tex]

3. Multiply by 3:
[tex]\[ 3 \times 9 = 27 \][/tex]

4. Multiply [tex]\(-7\)[/tex] by [tex]\( b \)[/tex]:
[tex]\[ -7 \times (-8) = 56 \][/tex]

5. Combine both results:
[tex]\[ 27 + 56 = 83 \][/tex]

Therefore, the expression evaluates to 83.

Hence, the correct answer is:
[tex]\[ \boxed{83} \][/tex]