Complete the table of inputs and outputs for the given function.

[tex]g(x)=3-8x[/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
[tex]$\square$[/tex] & 0 \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
[tex]$\square$[/tex] & -5 \\
\hline
3 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Let's fill in the table step-by-step using the given values.

1. Find [tex]\( x \)[/tex] such that [tex]\( g(x) = 0 \)[/tex]:
Given the function [tex]\( g(x) = 3 - 8x \)[/tex]:
[tex]\[ 3 - 8x = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 8x = 3 \implies x = \frac{3}{8} = 0.375 \][/tex]

2. Find [tex]\( g(0) \)[/tex]:
Substituting [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ g(0) = 3 - 8(0) = 3 \][/tex]

3. Find [tex]\( x \)[/tex] such that [tex]\( g(x) = -5 \)[/tex]:
Given the function [tex]\( g(x) = 3 - 8x \)[/tex]:
[tex]\[ 3 - 8x = -5 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ -8x = -5 - 3 \implies -8x = -8 \implies x = 1 \][/tex]

4. Find [tex]\( g(3) \)[/tex]:
Substituting [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ g(3) = 3 - 8(3) = 3 - 24 = -21 \][/tex]

Thus, the completed table is:

[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline 0.375 & 0 \\ \hline 0 & 3 \\ \hline 1 & -5 \\ \hline 3 & -21 \\ \hline \end{array} \][/tex]