Answer :

To solve the problem, let's start by understanding the given conditions and transforming them into an algebraic form that allows us to solve the equation.

Given:
[tex]\[ \sqrt[x]{a} = \sqrt[4]{b} = \sqrt[3]{c} \][/tex]
and
[tex]\[ a \cdot b \cdot c = 1. \][/tex]

We need to show that [tex]\(x + y + z = 0\)[/tex].

First, let's introduce a common variable [tex]\(k\)[/tex] to simplify the given expressions. We can write:
[tex]\[ \sqrt[x]{a} = \sqrt[4]{b} = \sqrt[3]{c} = k. \][/tex]

Now, express [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] in terms of [tex]\(k\)[/tex]:

[tex]\[ a = k^x, \quad b = k^4, \quad c = k^3. \][/tex]

Next, substitute these expressions into the product condition [tex]\(a \cdot b \cdot c = 1\)[/tex]:

[tex]\[ (k^x) \cdot (k^4) \cdot (k^3) = 1. \][/tex]

Combine the exponents on the left-hand side:

[tex]\[ k^{x + 4 + 3} = k^7. \][/tex]

So the equation becomes:

[tex]\[ k^7 = 1. \][/tex]

The only way this can be true for any non-zero [tex]\(k\)[/tex] is if the exponent 7 equals 0 (because [tex]\(k^0 = 1\)[/tex] for any non-zero [tex]\(k\)[/tex]). Thus:

[tex]\[ x + 4 + 3 = 0. \][/tex]

Simplify the sum of the exponents:

[tex]\[ x + 4 + 3 = 0 \implies x + 7 = 0 \implies x = -7. \][/tex]

Now, since [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] are representing the exponents as per their respective roots:
[tex]\[ x = -7, \quad y = 4, \quad z = 3. \][/tex]

Thus:
[tex]\[ x + y + z = -7 + 4 + 3 = 0. \][/tex]

Hence, we have shown that:

[tex]\[ x + y + z = 0. \][/tex]

This completes the proof.