Answer :
To find the product of [tex]\(-\frac{3}{10}\)[/tex] and [tex]\(-0.1\)[/tex], we need to multiply the two values together. Let’s break down the steps:
1. Identify the values: We have the fraction [tex]\(-\frac{3}{10}\)[/tex] and the decimal [tex]\(-0.1\)[/tex].
2. Multiply the values: When two negative numbers are multiplied, the result is positive. Therefore, we need to multiply [tex]\(\frac{3}{10}\)[/tex] by [tex]\(0.1\)[/tex].
3. Perform the multiplication:
- Multiplying [tex]\(\frac{3}{10}\)[/tex] by [tex]\(0.1\)[/tex] can be understood by converting [tex]\(0.1\)[/tex] to a fraction. [tex]\(0.1\)[/tex] is equivalent to [tex]\(\frac{1}{10}\)[/tex].
- Now, multiply the fractions:
[tex]\[ \frac{3}{10} \times \frac{1}{10} = \frac{3 \times 1}{10 \times 10} = \frac{3}{100} \][/tex]
4. Convert the result back to decimal form: [tex]\(\frac{3}{100}\)[/tex] is equivalent to 0.03 in decimal form.
Therefore, the product of [tex]\(-\frac{3}{10}\)[/tex] and [tex]\(-0.1\)[/tex] is [tex]\(0.03\)[/tex].
1. Identify the values: We have the fraction [tex]\(-\frac{3}{10}\)[/tex] and the decimal [tex]\(-0.1\)[/tex].
2. Multiply the values: When two negative numbers are multiplied, the result is positive. Therefore, we need to multiply [tex]\(\frac{3}{10}\)[/tex] by [tex]\(0.1\)[/tex].
3. Perform the multiplication:
- Multiplying [tex]\(\frac{3}{10}\)[/tex] by [tex]\(0.1\)[/tex] can be understood by converting [tex]\(0.1\)[/tex] to a fraction. [tex]\(0.1\)[/tex] is equivalent to [tex]\(\frac{1}{10}\)[/tex].
- Now, multiply the fractions:
[tex]\[ \frac{3}{10} \times \frac{1}{10} = \frac{3 \times 1}{10 \times 10} = \frac{3}{100} \][/tex]
4. Convert the result back to decimal form: [tex]\(\frac{3}{100}\)[/tex] is equivalent to 0.03 in decimal form.
Therefore, the product of [tex]\(-\frac{3}{10}\)[/tex] and [tex]\(-0.1\)[/tex] is [tex]\(0.03\)[/tex].