Answer :

To prove that:

[tex]\[ \frac{5^{m+2} - 5^m}{5^{m+1} + 5^m} = 4 \][/tex]

we can follow a step-by-step simplification process.

1. Rewrite the expression by factoring out common terms:

Since the terms in the numerator and the denominator involve powers of 5, we can factor out the lower power of 5 in each case.

[tex]\[ \frac{5^{m+2} - 5^m}{5^{m+1} + 5^m} \][/tex]

2. Factor out [tex]\(5^m\)[/tex] in both the numerator and the denominator:

In the numerator:
[tex]\[ 5^{m+2} = 5^m \cdot 5^2 = 25 \cdot 5^m \][/tex]

Therefore, the numerator becomes:
[tex]\[ 25 \cdot 5^m - 5^m = 5^m (25 - 1) = 5^m \cdot 24 \][/tex]

In the denominator:
[tex]\[ 5^{m+1} = 5^m \cdot 5 = 5 \cdot 5^m \][/tex]

Therefore, the denominator becomes:
[tex]\[ 5 \cdot 5^m + 5^m = 5^m (5 + 1) = 5^m \cdot 6 \][/tex]

3. Reassemble the expression with the factored terms:

[tex]\[ \frac{5^m \cdot 24}{5^m \cdot 6} \][/tex]

4. Simplify the expression by canceling out the common factor [tex]\(5^m\)[/tex]:

[tex]\[ \frac{24}{6} = 4 \][/tex]

Thus, we have shown that:

[tex]\[ \frac{5^{m+2} - 5^m}{5^{m+1} + 5^m} = 4 \][/tex]

This completes the proof.