Evaluate:

1. [tex]9^0 =[/tex]

2. [tex](9^0 - 5^0) \times 3^0 = \quad[/tex]

3. [tex]13^{12-12} = \quad[/tex]

4. [tex]21^0 + 23^0 + 29^0 = \quad[/tex]

5. [tex]18^0 + 8^0 = \quad[/tex]

6. [tex]3^0 \times 5^0 \times 7^0 =[/tex]

7. [tex]\left(-\frac{6}{11}\right)^0 + \left(\frac{3}{5}\right)^0 = \quad[/tex]

8. [tex]0^{13} \times 13^0 = \quad[/tex]

9. [tex]3^2 + 2^0 = \quad[/tex]

10. [tex]\left(\frac{2}{3}\right)^0 = \quad[/tex]

11. [tex]4^0 - 5^0 + 6^0 = \quad[/tex]

12. [tex]\frac{(-9)^0 - 9^0}{3^4} =[/tex]



Answer :

### Let's solve the given expressions step-by-step:

1. [tex]\( 9^0 = 1 \)[/tex]

Any nonzero number raised to the power of 0 is equal to 1.

2. [tex]\( (9^0 - 5^0) \times 3^0 = (1 - 1) \times 1 = 0 \)[/tex]

Here, both [tex]\( 9^0 \)[/tex] and [tex]\( 5^0 \)[/tex] are equal to 1. So, [tex]\( 1 - 1 = 0 \)[/tex], and [tex]\( 0 \times 1 = 0 \)[/tex].

3. [tex]\( 13^{12-12} = 13^0 = 1 \)[/tex]

Subtracting the exponents results in 0, so any nonzero number to the power of 0 is 1.

4. [tex]\( 21^0 + 23^0 + 29^0 = 1 + 1 + 1 = 3 \)[/tex]

Each term [tex]\( 21^0, 23^0, \)[/tex] and [tex]\( 29^0 \)[/tex] is 1. Adding them up results in 3.

5. [tex]\( 18^0 + 8^0 = 1 + 1 = 2 \)[/tex]

Each term [tex]\( 18^0 \)[/tex] and [tex]\( 8^0 \)[/tex] is 1. Adding them together results in 2.

6. [tex]\( 3^0 \times 5^0 \times 7^0 = 1 \times 1 \times 1 = 1 \)[/tex]

Each term [tex]\( 3^0, 5^0, \)[/tex] and [tex]\( 7^0 \)[/tex] is 1. Multiplying them together results in 1.

---

7. [tex]\( \left(-\frac{6}{11}\right)^0 + \left(\frac{3}{5}\right)^0 = 1 + 1 = 2 \)[/tex]

Both [tex]\( \left(-\frac{6}{11}\right)^0 \)[/tex] and [tex]\( \left(\frac{3}{5}\right)^0 \)[/tex] are 1. Adding them together results in 2.

8. [tex]\( 0^{13} \times 13^0 = 0 \times 1 = 0 \)[/tex]

[tex]\( 0^{13} \)[/tex] is 0, and [tex]\( 13^0 \)[/tex] is 1. Multiplying them results in 0.

9. [tex]\( 3^2 + 2^0 = 9 + 1 = 10 \)[/tex]

[tex]\( 3^2 \)[/tex] is 9 and [tex]\( 2^0 \)[/tex] is 1. Adding them together results in 10.

10. [tex]\( \left(\frac{2}{3}\right)^0 = 1 \)[/tex]

Any nonzero number to the power of 0 is 1.

11. [tex]\( 4^0 - 5^0 + 6^0 = 1 - 1 + 1 = 1 \)[/tex]

Each term [tex]\( 4^0, 5^0, \)[/tex] and [tex]\( 6^0 \)[/tex] is 1. [tex]\( 1 - 1 + 1 = 1 \)[/tex].

12. [tex]\( \frac{(-9)^0 - 9^0}{3^4} = \frac{1 - 1}{81} = \frac{0}{81} = 0 \)[/tex]

Both [tex]\( (-9)^0 \)[/tex] and [tex]\( 9^0 \)[/tex] are 1. [tex]\( 1 - 1 = 0 \)[/tex] and [tex]\( 0 / 81 = 0 \)[/tex].

### Final answers:

1. [tex]\( 1 \)[/tex]
2. [tex]\( 0 \)[/tex]
3. [tex]\( 1 \)[/tex]
4. [tex]\( 3 \)[/tex]
5. [tex]\( 2 \)[/tex]
6. [tex]\( 1 \)[/tex]
7. [tex]\( 2 \)[/tex]
8. [tex]\( 0 \)[/tex]
9. [tex]\( 10 \)[/tex]
10. [tex]\( 1 \)[/tex]
11. [tex]\( 1 \)[/tex]
12. [tex]\( 0 \)[/tex]