Write the number.

1. [tex]9 \times 10^6+4 \times 10^5+7 \times 10^4+4 \times 10^3+8 \times 10^2+2 \times 10^1+1 \times 10^0[/tex]

2. [tex]5 \times 10^5+5 \times 10^2+6 \times 10^0[/tex]

3. [tex]2 \times 10^4+1 \times 10^3+3 \times 10^2+7 \times 10^1[/tex]

4. [tex]8 \times 10^6+8 \times 10^2+5 \times 10^1+4 \times 10^0[/tex]

5. [tex]7 \times 10^5+6 \times 10^4+2 \times 10^3+3 \times 10^0[/tex]

6. [tex]3 \times 10^6+2 \times 10^4+1 \times 10^2+8 \times 10^0[/tex]



Answer :

Certainly! Let's write each number one by one based on the given scientific notation expressions:

1. First Expression:
[tex]\[ 9 \times 10^6 + 4 \times 10^5 + 7 \times 10^4 + 4 \times 10^3 + 8 \times 10^2 + 2 \times 10^1 + 1 \times 10^0 \][/tex]
Combining all the terms, the number is:
[tex]\[ 9,474,821 \][/tex]

2. Second Expression:
[tex]\[ 5 \times 10^5 + 5 \times 10^2 + 6 \times 10^0 \][/tex]
Combining all the terms, the number is:
[tex]\[ 500,506 \][/tex]

3. Third Expression:
[tex]\[ 2 \times 10^4 + 1 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 \][/tex]
Combining all the terms, the number is:
[tex]\[ 21,370 \][/tex]

4. Fourth Expression:
[tex]\[ 8 \times 10^6 + 8 \times 10^2 + 5 \times 10^1 + 4 \times 10^0 \][/tex]
Combining all the terms, the number is:
[tex]\[ 8,000,854 \][/tex]

5. Fifth Expression:
[tex]\[ 7 \times 10^5 + 6 \times 10^4 + 2 \times 10^3 + 3 \times 10^0 \][/tex]
Combining all the terms, the number is:
[tex]\[ 762,003 \][/tex]

6. Sixth Expression:
[tex]\[ 3 \times 10^6 + 2 \times 10^4 + 1 \times 10^2 + 8 \times 10^0 \][/tex]
Combining all the terms, the number is:
[tex]\[ 3,020,108 \][/tex]

So, the numbers corresponding to each of the given expressions are:
1. [tex]\(9,474,821\)[/tex]
2. [tex]\(500,506\)[/tex]
3. [tex]\(21,370\)[/tex]
4. [tex]\(8,000,854\)[/tex]
5. [tex]\(762,003\)[/tex]
6. [tex]\(3,020,108\)[/tex]