Certainly! Let's convert each of the scientific notation expressions into their usual numerical form.
### 1. [tex]\( 7.5 \times 10^4 \)[/tex]
To convert [tex]\( 7.5 \times 10^4 \)[/tex], we move the decimal point 4 places to the right because the exponent of 10 is 4:
[tex]\[ 7.5 \rightarrow 75000.0 \][/tex]
### 2. [tex]\( 1.056 \times 10^9 \)[/tex]
For [tex]\( 1.056 \times 10^9 \)[/tex], we move the decimal point 9 places to the right due to the exponent of 10 being 9:
[tex]\[ 1.056 \rightarrow 1056000000.0 \][/tex]
### 3. [tex]\( 9.41 \times 10^{11} \)[/tex]
In the case of [tex]\( 9.41 \times 10^{11} \)[/tex], we shift the decimal point 11 places to the right as the exponent of 10 is 11:
[tex]\[ 9.41 \rightarrow 941000000000.0 \][/tex]
### 4. [tex]\( 8.006 \times 10^7 \)[/tex]
For [tex]\( 8.006 \times 10^7 \)[/tex], we move the decimal point 7 places to the right as the exponent of 10 is 7:
[tex]\[ 8.006 \rightarrow 80060000.0 \][/tex]
So the usual forms of the given scientific notations are:
1. [tex]\( 7.5 \times 10^4 \)[/tex] is [tex]\( 75000.0 \)[/tex]
2. [tex]\( 1.056 \times 10^9 \)[/tex] is [tex]\( 1056000000.0 \)[/tex]
3. [tex]\( 9.41 \times 10^{11} \)[/tex] is [tex]\( 941000000000.0 \)[/tex]
4. [tex]\( 8.006 \times 10^7 \)[/tex] is [tex]\( 80060000.0 \)[/tex]
I hope this clarifies the conversions for you!