Tick the correct option.

1. The value of [tex]\frac{(-7)^9}{(-7)^6}[/tex] is:
a. 343
b. -343
c. [tex](-7)^9 \times \frac{1}{3}[/tex]
d. [tex](-7)^{15}[/tex]

2. [tex]\left(a^x \times a^y\right)^z[/tex] equals:
a. [tex]\left(a^{x-y}\right)^z[/tex]
b. [tex]a^{xyz}[/tex]
c. [tex]a^{x+yz}[/tex]
d. [tex]a^{(x+y)z}[/tex]

3. The value of [tex]4^8 \div 4^{11}[/tex] is:
a. [tex]4^3[/tex]
b. -64
c. [tex]\frac{1}{64}[/tex]
d. [tex]\frac{1}{4^{-3}}[/tex]

4. 0.0000000531 can be written in the standard form as:
a. [tex]5.31 \times 10^{-8}[/tex]
b. [tex]5.31 \times 10^8[/tex]
c. [tex](5.31 \times 10)^8[/tex]
d. [tex]531 \times 10^{-8}[/tex]



Answer :

Let's solve the questions one by one and understand the detailed solution:

### Question 1:
Determine the value of [tex]\(\frac{(-7)^9}{(-7)^6}\)[/tex]:

Using the property of exponents:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

For [tex]\(\frac{(-7)^9}{(-7)^6}\)[/tex], we have:
[tex]\[ (-7)^{9-6} = (-7)^3 \][/tex]

Now, calculate [tex]\((-7)^3\)[/tex]:
[tex]\[ (-7) \times (-7) \times (-7) = -343 \][/tex]

Thus, the correct option is:
b. [tex]\(-343\)[/tex]

### Question 2:
Evaluate [tex]\(\left(a^x \times a^y\right)^z\)[/tex]:

Using the properties of exponents, we know that:
[tex]\[ \left(a^m \times a^n\right)^k = a^{(m+n)k} \][/tex]

For [tex]\(\left(a^x \times a^y\right)^z\)[/tex], we can rewrite it as:
[tex]\[ a^{(x+y)z} \][/tex]

Thus, the correct option is:
d. [tex]\(a^{(x+y)z}\)[/tex]

### Question 3:
Determine the value of [tex]\(4^8 \div 4^{11}\)[/tex]:

Using the property of exponents:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

For [tex]\(4^8 \div 4^{11}\)[/tex], we have:
[tex]\[ 4^{8-11} = 4^{-3} \][/tex]

Converting [tex]\(4^{-3}\)[/tex] to a fraction:
[tex]\[ 4^{-3} = \frac{1}{4^3} \][/tex]

Calculate [tex]\(4^3\)[/tex]:
[tex]\[ 4^3 = 64 \][/tex]

Thus, [tex]\(4^{-3} = \frac{1}{64}\)[/tex], and the correct option is:
c. [tex]\(\frac{1}{64}\)[/tex]

### Question 4:
Express 0.0000000531 in standard form:

To convert a number to its standard form, we need to write it as a product of a number between 1 and 10 and a power of 10.

The number 0.0000000531 can be written as:
[tex]\[ 5.31 \times 10^{-8} \][/tex]

Thus, the correct option is:
a. [tex]\(5.31 \times 10^{-8}\)[/tex]

So, the final answers are:
1. b. [tex]\(-343\)[/tex]
2. d. [tex]\(a^{(x+y)z}\)[/tex]
3. c. [tex]\(\frac{1}{64}\)[/tex]
4. a. [tex]\(5.31 \times 10^{-8}\)[/tex]