Classify the following expressions into monomials (M), binomials (B), and trinomials (T):

1. [tex]\( 6.6 pqrs^2 \)[/tex]
2. [tex]\( -4xy + 6yx \)[/tex]
3. [tex]\( \frac{4}{5}x + \frac{3}{4}y \)[/tex]
4. [tex]\( y^2 + y - 3 \)[/tex]
5. [tex]\( 100 + z \)[/tex]
6. [tex]\( 7ab - 5bc + 2ac \)[/tex]



Answer :

To classify the given polynomial expressions into monomials (M), binomials (B), and trinomials (T), let's examine each expression closely:

1. [tex]\(6.6 pqrs^2\)[/tex]:
- This expression consists of a single term [tex]\(6.6 pqrs^2\)[/tex].
- Classification: Monomial (M)

2. [tex]\(-4xy + 6 y x\)[/tex]:
- This expression can be simplified since [tex]\(-4xy + 6 yx\)[/tex] combines terms with similar variables.
- After simplification, we have [tex]\((-4 + 6)xy = 2xy\)[/tex], which is a single term.
- Classification: Monomial (M)

3. [tex]\(\frac{4}{5} x + \frac{3}{4} y\)[/tex]:
- This expression consists of two distinct terms: [tex]\(\frac{4}{5} x\)[/tex] and [tex]\(\frac{3}{4} y\)[/tex].
- Classification: Binomial (B)

4. [tex]\(y^2 + y - 3\)[/tex]:
- This expression consists of three terms: [tex]\(y^2\)[/tex], [tex]\(y\)[/tex], and [tex]\(-3\)[/tex].
- Classification: Trinomial (T)

5. [tex]\(100 + z\)[/tex]:
- This expression consists of two distinct terms: [tex]\(100\)[/tex] and [tex]\(z\)[/tex].
- Classification: Binomial (B)

6. [tex]\(7ab - 5bc + 2ac\)[/tex]:
- This expression consists of three terms: [tex]\(7ab\)[/tex], [tex]\(-5bc\)[/tex], and [tex]\(2ac\)[/tex].
- Classification: Trinomial (T)

Thus, summarizing the classifications:

1. [tex]\(6.6 pqrs^2\)[/tex]: Monomial (M)
2. [tex]\(-4xy + 6 y x\)[/tex]: Binomial (B)
3. [tex]\(\frac{4}{5} x + \frac{3}{4} y\)[/tex]: Binomial (B)
4. [tex]\(y^2 + y - 3\)[/tex]: Trinomial (T)
5. [tex]\(100 + z\)[/tex]: Binomial (B)
6. [tex]\(7ab - 5bc + 2ac\)[/tex]: Trinomial (T)