Sure, let's analyze the points given: [tex]\((3.5, -2)\)[/tex] and [tex]\((4.5, 0.5)\)[/tex].
1. Identify the Coordinates:
- The first point is [tex]\((3.5, -2)\)[/tex]. Here, [tex]\(3.5\)[/tex] is the [tex]\(x\)[/tex]-coordinate and [tex]\(-2\)[/tex] is the [tex]\(y\)[/tex]-coordinate. We can label this point as [tex]\((x_1, y_1)\)[/tex], where [tex]\(x_1 = 3.5\)[/tex] and [tex]\(y_1 = -2\)[/tex].
- The second point is [tex]\((4.5, 0.5)\)[/tex]. Here, [tex]\(4.5\)[/tex] is the [tex]\(x\)[/tex]-coordinate and [tex]\(0.5\)[/tex] is the [tex]\(y\)[/tex]-coordinate. We can label this point as [tex]\((x_2, y_2)\)[/tex], where [tex]\(x_2 = 4.5\)[/tex] and [tex]\(y_2 = 0.5\)[/tex].
Given these coordinates, we have identified and extracted the following values:
- [tex]\(x_1 = 3.5\)[/tex]
- [tex]\(y_1 = -2\)[/tex]
- [tex]\(x_2 = 4.5\)[/tex]
- [tex]\(y_2 = 0.5\)[/tex]
So, the extracted coordinates from the points [tex]\((3.5, -2)\)[/tex] and [tex]\((4.5, 0.5)\)[/tex] are:
[tex]\[
(x_1, y_1, x_2, y_2) = (3.5, -2, 4.5, 0.5)
\][/tex]
This should be useful in any subsequent calculations or analyses you need to carry out involving these points.