Let [tex]$A=\left\{-10,-\frac{6}{3},-\frac{5}{8},-\sqrt{3}, 0, \frac{1}{4}, 3,6 \pi, 2, \sqrt{18}\right\}$[/tex]. List all the elements of [tex]$A$[/tex] that belong to the set of integers.

Select all that apply.
A. -10
B. [tex]$-\sqrt{3}$[/tex]
C. [tex][tex]$\sqrt{18}$[/tex][/tex]
D. 5
E. 3
F. [tex]$\frac{1}{4}$[/tex]
G. 0
H. [tex]$-\frac{6}{3}$[/tex]
I. [tex][tex]$6 \pi$[/tex][/tex]
J. 2



Answer :

To solve this problem, we need to determine which elements of set [tex]\( A \)[/tex] are integers.

1. Analyze each element of set [tex]\( A \)[/tex]:

[tex]\[ A = \left\{-10, -\frac{6}{3}, -\frac{5}{8}, -\sqrt{3}, 0, \frac{1}{4}, 3, 6 \pi, 2, \sqrt{18}\right\} \][/tex]

2. Check each element to see if it is an integer:

- [tex]\(-10\)[/tex]: This is an integer.

- [tex]\(-\frac{6}{3}\)[/tex]: Simplifies to [tex]\(-2\)[/tex], which is an integer.

- [tex]\(-\frac{5}{8}\)[/tex]: This is a fraction, not an integer.

- [tex]\(-\sqrt{3}\)[/tex]: The square root of 3 is an irrational number, so this is not an integer.

- [tex]\(0\)[/tex]: This is an integer.

- [tex]\(\frac{1}{4}\)[/tex]: This is a fraction, not an integer.

- [tex]\(3\)[/tex]: This is an integer.

- [tex]\(6\pi\)[/tex]: [tex]\(\pi\)[/tex] is an irrational number, so any multiple of [tex]\(\pi\)[/tex] is not an integer.

- [tex]\(2\)[/tex]: This is an integer.

- [tex]\(\sqrt{18}\)[/tex]: The square root of 18 simplifies to [tex]\(3\sqrt{2}\)[/tex], which is not an integer.

3. List the elements that are integers:

The integers in set [tex]\( A \)[/tex] are:
[tex]\[ -10, -2, 0, 3, 2 \][/tex]

4. Match to the choices given:

The list of integers matches the following choices:
- A. [tex]\(-10\)[/tex]
- G. [tex]\(0\)[/tex]
- H. [tex]\(-\frac{6}{3}\)[/tex] (which simplifies to [tex]\(-2\)[/tex])
- E. [tex]\(3\)[/tex]
- J. [tex]\(2\)[/tex]

Based on the detailed analysis, the elements of [tex]\( A \)[/tex] that belong to the set of integers are:

- A. [tex]\(-10\)[/tex]
- G. [tex]\(0\)[/tex]
- H. [tex]\(-\frac{6}{3}\)[/tex]
- E. [tex]\(3\)[/tex]
- J. [tex]\(2\)[/tex]